きみはMicrosoftのDP-100J日本語復習赤本認定テストに合格するためにたくさんのルートを選択肢があります。NewValidDumpsは君のために良い訓練ツールを提供し、君のMicrosoft認証試に高品質の参考資料を提供しいたします。あなたの全部な需要を満たすためにいつも頑張ります。 NewValidDumps MicrosoftのDP-100J日本語復習赤本試験問題集はあなたに問題と解答に含まれている大量なテストガイドを提供しています。インターネットで時勢に遅れないDP-100J日本語復習赤本勉強資料を提供するというサイトがあるかもしれませんが、NewValidDumpsはあなたに高品質かつ最新のMicrosoftのDP-100J日本語復習赤本トレーニング資料を提供するユニークなサイトです。 NewValidDumpsの専門家チームがMicrosoftのDP-100J日本語復習赤本認証試験に対して最新の短期有効なトレーニングプログラムを研究しました。
Microsoft Azure DP-100J日本語復習赤本 - Designing and Implementing a Data Science Solution on Azure (DP-100日本語版) NewValidDumpsはあなたが首尾よく試験に合格することを助けるだけでなく、あなたの知識と技能を向上させることもできます。 「もうすぐ試験の時間なのに、まだ試験に合格する自信を持っていないですが、どうしたらいいでしょうか。何か試験に合格するショートカットがあるのですか。
試験の準備をするためにNewValidDumpsのMicrosoftのDP-100J日本語復習赤本試験トレーニング資料を買うのは冒険的行為と思ったとしたら、あなたの人生の全てが冒険なことになります。一番遠いところへ行った人はリスクを背負うことを恐れない人です。また、NewValidDumpsのMicrosoftのDP-100J日本語復習赤本試験トレーニング資料が信頼できるのは多くの受験生に証明されたものです。
NewValidDumpsのMicrosoftのDP-100J日本語復習赤本試験トレーニング資料を利用すれば、認定試験に合格するのは簡単になります。うちのMicrosoftのDP-100J日本語復習赤本試験トレーニング資料は豊富な経験を持っている専門家が長年の研究を通じて開発されたものです。NewValidDumpsの学習教材は君の初めての試しでMicrosoftのDP-100J日本語復習赤本認定試験に合格するのに助けます。
NewValidDumpsのMicrosoftのDP-100J日本語復習赤本試験トレーニング資料はMicrosoftのDP-100J日本語復習赤本認定試験を準備するのリーダーです。NewValidDumpsの MicrosoftのDP-100J日本語復習赤本試験トレーニング資料は高度に認証されたIT領域の専門家の経験と創造を含めているものです。
QUESTION NO: 1
モデルトレーニング要件に合わせて、順列機能の重要度モジュールを構成する必要がありま
す。
あなたは何をするべきか?回答するには、回答領域のダイアログボックスで適切なオプショ
ンを選択します。
注:それぞれの正しい選択には1ポイントの価値があります。
Answer:
Explanation
Box 1: 500
For Random seed, type a value to use as seed for randomization. If you specify 0 (the default), a number is generated based on the system clock.
A seed value is optional, but you should provide a value if you want reproducibility across runs of the same experiment.
Here we must replicate the findings.
Box 2: Mean Absolute Error
Scenario: Given a trained model and a test dataset, you must compute the Permutation
Feature Importance scores of feature variables. You need to set up the Permutation Feature
Importance module to select the correct metric to investigate the model's accuracy and replicate the findings.
Regression. Choose one of the following: Precision, Recall, Mean Absolute Error , Root
Mean Squared Error, Relative Absolute Error, Relative Squared Error, Coefficient of
Determination References:
https://docs.microsoft.com/en-us/azure/machine-learning/studio-module-
reference/permutation-feature-importan
QUESTION NO: 2
Azure Machine Learning Studioを使用してデータセットを分析しています。
各機能列のp値と一意の値カウントを含む統計サマリーを生成する必要があります。
ユーザーはどちらのモジュールを使用できますか?それぞれの正解は完全な解決策を提示し
ます。
注:それぞれの正しい選択には1ポイントの価値があります。
A. インジケーター値に変換
B. カウントテーブルのエクスポート
C. 線形相関の計算
D. データの要約
E. Pythonスクリプトの実行
Answer: B,C
Explanation
The Export Count Table module is provided for backward compatibility with experiments that use the Build Count Table (deprecated) and Count Featurizer (deprecated) modules.
E: Summarize Data statistics are useful when you want to understand the characteristics of the complete dataset. For example, you might need to know:
How many missing values are there in each column?
How many unique values are there in a feature column?
What is the mean and standard deviation for each column?
The module calculates the important scores for each column, and returns a row of summary statistics for each variable (data column) provided as input.
References:
https://docs.microsoft.com/en-us/azure/machine-learning/studio-module-reference/export- count-table
https://docs.microsoft.com/en-us/azure/machine-learning/studio-module-
reference/summarize-data
QUESTION NO: 3
x.1、x2、およびx3の機能に対してscikit-learn
Pythonライブラリを使用して、機能のスケーリングを実行しています。
元のデータとスケーリングされたデータを次の図に示します。
ドロップダウンメニューを使用して、グラフィックに表示される情報に基づいて各質問に回
答する回答選択肢を選択します。
注:それぞれの正しい選択には1ポイントの価値があります。
Answer:
Explanation
Box 1: StandardScaler
The StandardScaler assumes your data is normally distributed within each feature and will scale them such that the distribution is now centred around 0, with a standard deviation of 1.
Example:
All features are now on the same scale relative to one another.
Box 2: Min Max Scaler
Notice that the skewness of the distribution is maintained but the 3 distributions are brought into the same scale so that they overlap.
Box 3: Normalizer
References:
http://benalexkeen.com/feature-scaling-with-scikit-learn/
QUESTION NO: 4
注:この質問は、同じシナリオを提示する一連の質問の一部です。シリーズの各質問には、
記載された目標を達成する可能性のある独自のソリューションが含まれています。一部の質
問セットには複数の正しい解決策がある場合もあれば、正しい解決策がない場合もあります
。
このセクションの質問に回答すると、その質問に戻ることはできません。その結果、これら
の質問はレビュー画面に表示されません。
複数の列に欠損値を含む数値データセットを分析しています。
機能セットの次元に影響を与えることなく、適切な操作を使用して欠損値を消去する必要が
あります。
すべての値を含めるには、完全なデータセットを分析する必要があります。
解決策:連鎖方程式による多重代入(MICE)メソッドを使用して、各欠損値を置き換えま
す。
ソリューションは目標を達成していますか?
A. はい
B. いいえ
Answer: A
Explanation
Replace using MICE: For each missing value, this option assigns a new value, which is calculated by using a method described in the statistical literature as "Multivariate Imputation using Chained Equations" or
"Multiple Imputation by Chained Equations". With a multiple imputation method, each variable with missing data is modeled conditionally using the other variables in the data before filling in the missing values.
Note: Multivariate imputation by chained equations (MICE), sometimes called "fully conditional specification" or "sequential regression multiple imputation" has emerged in the statistical literature as one principled method of addressing missing data. Creating multiple imputations, as opposed to single imputations, accounts for the statistical uncertainty in the imputations. In addition, the chained equations approach is very flexible and can handle variables of varying types (e.g., continuous or binary) as well as complexities such as bounds or survey skip patterns.
References:
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3074241/
https://docs.microsoft.com/en-us/azure/machine-learning/studio-module-reference/clean- missing-data
QUESTION NO: 5
分類タスクを解決しています。
データセットが不均衡です。
あなたは、分類精度を向上させるためにAzureの機械学習Studioのモジュールを選択する必
要があります。
あなたはどちらのモジュールを使用する必要がありますか?
A. フィルタに基づく機能の選択
B. 順列機能の重要性
C. フィッシャー線形判別分析。
D. の合成少数オーバーサンプリング技術(撃ち)
Answer: D
Explanation
Use the SMOTE module in Azure Machine Learning Studio (classic) to increase the number of underepresented cases in a dataset used for machine learning. SMOTE is a better way of increasing the number of rare cases than simply duplicating existing cases.
You connect the SMOTE module to a dataset that is imbalanced. There are many reasons why a dataset might be imbalanced: the category you are targeting might be very rare in the population, or the data might simply be difficult to collect. Typically, you use SMOTE when the class you want to analyze is under-represented.
Reference:
https://docs.microsoft.com/en-us/azure/machine-learning/studio-module-reference/smote
信じられないなら、弊社のデモをやってみて、MicrosoftのEMC D-PWF-OE-00試験問題集を体験することができます。 無料デモはあなたに安心で購入して、購入した後1年間の無料MicrosoftのThe Open Group OG0-093試験の更新はあなたに安心で試験を準備することができます、あなたは確実に購入を休ませることができます私たちのソフトウェアを試してみてください。 もちろん、我々はあなたに一番安心させるのは我々の開発する多くの受験生に合格させるMicrosoftのNFPA CWBSP試験のソフトウェアです。 Microsoft SC-900J - 我々の承諾だけでなく、お客様に最も全面的で最高のサービスを提供します。 MicrosoftのSAP C-TS412-2021-JPN試験の準備は重要です。
Updated: May 28, 2022
試験コード:DP-100J
試験名称:Designing and Implementing a Data Science Solution on Azure (DP-100日本語版)
最近更新時間:2024-12-01
問題と解答:全 445 問
Microsoft DP-100J 合格率
ダウンロード
試験コード:DP-100J
試験名称:Designing and Implementing a Data Science Solution on Azure (DP-100日本語版)
最近更新時間:2024-12-01
問題と解答:全 445 問
Microsoft DP-100J 認定試験トレーリング
ダウンロード
試験コード:DP-100J
試験名称:Designing and Implementing a Data Science Solution on Azure (DP-100日本語版)
最近更新時間:2024-12-01
問題と解答:全 445 問
Microsoft DP-100J 資格受験料
ダウンロード