DP-100J試験攻略 資格取得

もし、DP-100J試験攻略問題集を勉強すれば、もし、{将来にITエリートになります。あらゆる人にとって、時間は非常に大切です。DP-100J試験攻略試験に対して、いろいろな資料があります。 我々のMicrosoftのDP-100J試験攻略ソフトを利用してお客様の高通過率及び我々の技術の高いチームで、我々は自信を持って我々NewValidDumpsは専門的なのだと言えます。アフターサービスは会社を評価する重要な基準です。 でも、Microsoft DP-100J試験攻略復習教材を選ばれば、試験に合格することは簡単です。

Microsoft Azure DP-100J あなたは最高のトレーニング資料を手に入れました。

NewValidDumpsの試験トレーニング資料はMicrosoftのDP-100J - Designing and Implementing a Data Science Solution on Azure (DP-100日本語版)試験攻略認定試験の100パーセントの合格率を保証します。 ITを通して自分の実力を証明したいのですか。IT業界に従事したいなら、IT認定試験を受験して認証資格を取得することは必要になります。

NewValidDumpsで、あなたの試験のためのテクニックと勉強資料を見つけることができます。NewValidDumpsのMicrosoftのDP-100J試験攻略試験トレーニング資料は豊富な知識と経験を持っているIT専門家に研究された成果で、正確度がとても高いです。NewValidDumpsに会ったら、最高のトレーニング資料を見つけました。

Microsoft DP-100J試験攻略 - 不思議でしょう。

DP-100J試験攻略認定試験に合格することは難しいようですね。試験を申し込みたいあなたは、いまどうやって試験に準備すべきなのかで悩んでいますか。そうだったら、下記のものを読んでください。いまDP-100J試験攻略試験に合格するショートカットを教えてあげますから。あなたを試験に一発合格させる素晴らしいDP-100J試験攻略試験に関連する参考書が登場しますよ。それはNewValidDumpsのDP-100J試験攻略問題集です。気楽に試験に合格したければ、はやく試しに来てください。

それは正確的な試験の内容を保証しますし、良いサービスで、安い価格で営業します。NewValidDumpsがあれば、MicrosoftのDP-100J試験攻略試験に合格するのは心配しません。

DP-100J PDF DEMO:

QUESTION NO: 1
モデルトレーニング要件に合わせて、順列機能の重要度モジュールを構成する必要がありま
す。
あなたは何をするべきか?回答するには、回答領域のダイアログボックスで適切なオプショ
ンを選択します。
注:それぞれの正しい選択には1ポイントの価値があります。
Answer:
Explanation
Box 1: 500
For Random seed, type a value to use as seed for randomization. If you specify 0 (the default), a number is generated based on the system clock.
A seed value is optional, but you should provide a value if you want reproducibility across runs of the same experiment.
Here we must replicate the findings.
Box 2: Mean Absolute Error
Scenario: Given a trained model and a test dataset, you must compute the Permutation
Feature Importance scores of feature variables. You need to set up the Permutation Feature
Importance module to select the correct metric to investigate the model's accuracy and replicate the findings.
Regression. Choose one of the following: Precision, Recall, Mean Absolute Error , Root
Mean Squared Error, Relative Absolute Error, Relative Squared Error, Coefficient of
Determination References:
https://docs.microsoft.com/en-us/azure/machine-learning/studio-module-
reference/permutation-feature-importan

QUESTION NO: 2
Azure Machine Learning Studioを使用してデータセットを分析しています。
各機能列のp値と一意の値カウントを含む統計サマリーを生成する必要があります。
ユーザーはどちらのモジュールを使用できますか?それぞれの正解は完全な解決策を提示し
ます。
注:それぞれの正しい選択には1ポイントの価値があります。
A. インジケーター値に変換
B. カウントテーブルのエクスポート
C. 線形相関の計算
D. データの要約
E. Pythonスクリプトの実行
Answer: B,C
Explanation
The Export Count Table module is provided for backward compatibility with experiments that use the Build Count Table (deprecated) and Count Featurizer (deprecated) modules.
E: Summarize Data statistics are useful when you want to understand the characteristics of the complete dataset. For example, you might need to know:
How many missing values are there in each column?
How many unique values are there in a feature column?
What is the mean and standard deviation for each column?
The module calculates the important scores for each column, and returns a row of summary statistics for each variable (data column) provided as input.
References:
https://docs.microsoft.com/en-us/azure/machine-learning/studio-module-reference/export- count-table
https://docs.microsoft.com/en-us/azure/machine-learning/studio-module-
reference/summarize-data

QUESTION NO: 3
x.1、x2、およびx3の機能に対してscikit-learn
Pythonライブラリを使用して、機能のスケーリングを実行しています。
元のデータとスケーリングされたデータを次の図に示します。
ドロップダウンメニューを使用して、グラフィックに表示される情報に基づいて各質問に回
答する回答選択肢を選択します。
注:それぞれの正しい選択には1ポイントの価値があります。
Answer:
Explanation
Box 1: StandardScaler
The StandardScaler assumes your data is normally distributed within each feature and will scale them such that the distribution is now centred around 0, with a standard deviation of 1.
Example:
All features are now on the same scale relative to one another.
Box 2: Min Max Scaler
Notice that the skewness of the distribution is maintained but the 3 distributions are brought into the same scale so that they overlap.
Box 3: Normalizer
References:
http://benalexkeen.com/feature-scaling-with-scikit-learn/

QUESTION NO: 4
注:この質問は、同じシナリオを提示する一連の質問の一部です。シリーズの各質問には、
記載された目標を達成する可能性のある独自のソリューションが含まれています。一部の質
問セットには複数の正しい解決策がある場合もあれば、正しい解決策がない場合もあります

このセクションの質問に回答すると、その質問に戻ることはできません。その結果、これら
の質問はレビュー画面に表示されません。
複数の列に欠損値を含む数値データセットを分析しています。
機能セットの次元に影響を与えることなく、適切な操作を使用して欠損値を消去する必要が
あります。
すべての値を含めるには、完全なデータセットを分析する必要があります。
解決策:連鎖方程式による多重代入(MICE)メソッドを使用して、各欠損値を置き換えま
す。
ソリューションは目標を達成していますか?
A. はい
B. いいえ
Answer: A
Explanation
Replace using MICE: For each missing value, this option assigns a new value, which is calculated by using a method described in the statistical literature as "Multivariate Imputation using Chained Equations" or
"Multiple Imputation by Chained Equations". With a multiple imputation method, each variable with missing data is modeled conditionally using the other variables in the data before filling in the missing values.
Note: Multivariate imputation by chained equations (MICE), sometimes called "fully conditional specification" or "sequential regression multiple imputation" has emerged in the statistical literature as one principled method of addressing missing data. Creating multiple imputations, as opposed to single imputations, accounts for the statistical uncertainty in the imputations. In addition, the chained equations approach is very flexible and can handle variables of varying types (e.g., continuous or binary) as well as complexities such as bounds or survey skip patterns.
References:
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3074241/
https://docs.microsoft.com/en-us/azure/machine-learning/studio-module-reference/clean- missing-data

QUESTION NO: 5
分類タスクを解決しています。
データセットが不均衡です。
あなたは、分類精度を向上させるためにAzureの機械学習Studioのモジュールを選択する必
要があります。
あなたはどちらのモジュールを使用する必要がありますか?
A. フィルタに基づく機能の選択
B. 順列機能の重要性
C. フィッシャー線形判別分析。
D. の合成少数オーバーサンプリング技術(撃ち)
Answer: D
Explanation
Use the SMOTE module in Azure Machine Learning Studio (classic) to increase the number of underepresented cases in a dataset used for machine learning. SMOTE is a better way of increasing the number of rare cases than simply duplicating existing cases.
You connect the SMOTE module to a dataset that is imbalanced. There are many reasons why a dataset might be imbalanced: the category you are targeting might be very rare in the population, or the data might simply be difficult to collect. Typically, you use SMOTE when the class you want to analyze is under-represented.
Reference:
https://docs.microsoft.com/en-us/azure/machine-learning/studio-module-reference/smote

ISACA CCAK - ここには、私たちは君の需要に応じます。 Pegasystems PEGACPSSA24V1 - NewValidDumpsを選ぶなら、絶対に後悔させません。 NewValidDumpsのMicrosoftのCompTIA CV0-004試験トレーニング資料は試験問題と解答を含まれて、豊富な経験を持っているIT業種の専門家が長年の研究を通じて作成したものです。 私たちは最も新しくて、最も正確性の高いMicrosoftのPMI PMI-PBA試験トレーニング資料を提供します。 Microsoft DP-600 - 我々の誠意を信じてください。

Updated: May 28, 2022

DP-100J試験攻略、Microsoft DP-100J学習指導 - Designing And Implementing A Data Science Solution On Azure Dp 100日本語版

PDF問題と解答

試験コード:DP-100J
試験名称:Designing and Implementing a Data Science Solution on Azure (DP-100日本語版)
最近更新時間:2025-01-19
問題と解答:全 445
Microsoft DP-100J 模擬問題集

  ダウンロード


 

模擬試験

試験コード:DP-100J
試験名称:Designing and Implementing a Data Science Solution on Azure (DP-100日本語版)
最近更新時間:2025-01-19
問題と解答:全 445
Microsoft DP-100J 試験関連赤本

  ダウンロード


 

オンライン版

試験コード:DP-100J
試験名称:Designing and Implementing a Data Science Solution on Azure (DP-100日本語版)
最近更新時間:2025-01-19
問題と解答:全 445
Microsoft DP-100J 認定資格試験

  ダウンロード


 

DP-100J 日本語関連対策

DP-100J 模擬試験問題集 関連認定