NewValidDumpsが提供した資料は最も全面的で、しかも更新の最も速いです。NewValidDumpsはその近道を提供し、君の多くの時間と労力も節約します。NewValidDumpsはMicrosoftのDP-100J合格受験記認定試験「Designing and Implementing a Data Science Solution on Azure (DP-100日本語版)」に向けてもっともよい問題集を研究しています。 早くNewValidDumpsの問題集を君の手に入れましょう。あなたはインターネットでMicrosoftのDP-100J合格受験記認証試験の練習問題と解答の試用版を無料でダウンロードしてください。 最新な情報を1年間に無料にアップデートしております。
NewValidDumps のMicrosoftのDP-100J - Designing and Implementing a Data Science Solution on Azure (DP-100日本語版)合格受験記問題集はシラバスに従って、それにDP-100J - Designing and Implementing a Data Science Solution on Azure (DP-100日本語版)合格受験記認定試験の実際に従って、あなたがもっとも短い時間で最高かつ最新の情報をもらえるように、弊社はトレーニング資料を常にアップグレードしています。 NewValidDumpsのMicrosoftのDP-100J サンプル問題集勉強資料は問題と解答を含めています。それは実践の検査に合格したソフトですから、全ての関連するIT認証に満たすことができます。
認証専門家や技術者及び全面的な言語天才がずっと最新のMicrosoftのDP-100J合格受験記試験を研究していますから、MicrosoftのDP-100J合格受験記認定試験に受かりたかったら、NewValidDumpsのサイトをクッリクしてください。あなたに成功に近づいて、夢の楽園に一歩一歩進めさせられます。NewValidDumps MicrosoftのDP-100J合格受験記試験トレーニング資料というのは一体なんでしょうか。
常々、時間とお金ばかり効果がないです。正しい方法は大切です。我々NewValidDumpsは一番効果的な方法を探してあなたにMicrosoftのDP-100J合格受験記試験に合格させます。弊社のMicrosoftのDP-100J合格受験記ソフトを購入するのを決めるとき、我々は各方面であなたに保障を提供します。購入した前の無料の試み、購入するときのお支払いへの保障、購入した一年間の無料更新MicrosoftのDP-100J合格受験記試験に失敗した全額での返金…これらは我々のお客様への承諾です。
NewValidDumpsは長年の努力を通じて、MicrosoftのDP-100J合格受験記認定試験の合格率が100パーセントになっていました。NewValidDumpsを選ぶなら、輝い未来を選ぶのに等しいです。
QUESTION NO: 1
モデルトレーニング要件に合わせて、順列機能の重要度モジュールを構成する必要がありま
す。
あなたは何をするべきか?回答するには、回答領域のダイアログボックスで適切なオプショ
ンを選択します。
注:それぞれの正しい選択には1ポイントの価値があります。
Answer:
Explanation
Box 1: 500
For Random seed, type a value to use as seed for randomization. If you specify 0 (the default), a number is generated based on the system clock.
A seed value is optional, but you should provide a value if you want reproducibility across runs of the same experiment.
Here we must replicate the findings.
Box 2: Mean Absolute Error
Scenario: Given a trained model and a test dataset, you must compute the Permutation
Feature Importance scores of feature variables. You need to set up the Permutation Feature
Importance module to select the correct metric to investigate the model's accuracy and replicate the findings.
Regression. Choose one of the following: Precision, Recall, Mean Absolute Error , Root
Mean Squared Error, Relative Absolute Error, Relative Squared Error, Coefficient of
Determination References:
https://docs.microsoft.com/en-us/azure/machine-learning/studio-module-
reference/permutation-feature-importan
QUESTION NO: 2
x.1、x2、およびx3の機能に対してscikit-learn
Pythonライブラリを使用して、機能のスケーリングを実行しています。
元のデータとスケーリングされたデータを次の図に示します。
ドロップダウンメニューを使用して、グラフィックに表示される情報に基づいて各質問に回
答する回答選択肢を選択します。
注:それぞれの正しい選択には1ポイントの価値があります。
Answer:
Explanation
Box 1: StandardScaler
The StandardScaler assumes your data is normally distributed within each feature and will scale them such that the distribution is now centred around 0, with a standard deviation of 1.
Example:
All features are now on the same scale relative to one another.
Box 2: Min Max Scaler
Notice that the skewness of the distribution is maintained but the 3 distributions are brought into the same scale so that they overlap.
Box 3: Normalizer
References:
http://benalexkeen.com/feature-scaling-with-scikit-learn/
QUESTION NO: 3
Azure Machine Learning Studioを使用してデータセットを分析しています。
各機能列のp値と一意の値カウントを含む統計サマリーを生成する必要があります。
ユーザーはどちらのモジュールを使用できますか?それぞれの正解は完全な解決策を提示し
ます。
注:それぞれの正しい選択には1ポイントの価値があります。
A. インジケーター値に変換
B. カウントテーブルのエクスポート
C. 線形相関の計算
D. データの要約
E. Pythonスクリプトの実行
Answer: B,C
Explanation
The Export Count Table module is provided for backward compatibility with experiments that use the Build Count Table (deprecated) and Count Featurizer (deprecated) modules.
E: Summarize Data statistics are useful when you want to understand the characteristics of the complete dataset. For example, you might need to know:
How many missing values are there in each column?
How many unique values are there in a feature column?
What is the mean and standard deviation for each column?
The module calculates the important scores for each column, and returns a row of summary statistics for each variable (data column) provided as input.
References:
https://docs.microsoft.com/en-us/azure/machine-learning/studio-module-reference/export- count-table
https://docs.microsoft.com/en-us/azure/machine-learning/studio-module-
reference/summarize-data
QUESTION NO: 4
分類タスクを解決しています。
データセットが不均衡です。
あなたは、分類精度を向上させるためにAzureの機械学習Studioのモジュールを選択する必
要があります。
あなたはどちらのモジュールを使用する必要がありますか?
A. フィルタに基づく機能の選択
B. 順列機能の重要性
C. フィッシャー線形判別分析。
D. の合成少数オーバーサンプリング技術(撃ち)
Answer: D
Explanation
Use the SMOTE module in Azure Machine Learning Studio (classic) to increase the number of underepresented cases in a dataset used for machine learning. SMOTE is a better way of increasing the number of rare cases than simply duplicating existing cases.
You connect the SMOTE module to a dataset that is imbalanced. There are many reasons why a dataset might be imbalanced: the category you are targeting might be very rare in the population, or the data might simply be difficult to collect. Typically, you use SMOTE when the class you want to analyze is under-represented.
Reference:
https://docs.microsoft.com/en-us/azure/machine-learning/studio-module-reference/smote
QUESTION NO: 5
注:この質問は、同じシナリオを提示する一連の質問の一部です。シリーズの各質問には、
記載された目標を達成する可能性のある独自のソリューションが含まれています。一部の質
問セットには複数の正しい解決策がある場合もあれば、正しい解決策がない場合もあります
。
このセクションの質問に回答すると、その質問に戻ることはできません。その結果、これら
の質問はレビュー画面に表示されません。
複数の列に欠損値を含む数値データセットを分析しています。
機能セットの次元に影響を与えることなく、適切な操作を使用して欠損値を消去する必要が
あります。
すべての値を含めるには、完全なデータセットを分析する必要があります。
解決策:連鎖方程式による多重代入(MICE)メソッドを使用して、各欠損値を置き換えま
す。
ソリューションは目標を達成していますか?
A. はい
B. いいえ
Answer: A
Explanation
Replace using MICE: For each missing value, this option assigns a new value, which is calculated by using a method described in the statistical literature as "Multivariate Imputation using Chained Equations" or
"Multiple Imputation by Chained Equations". With a multiple imputation method, each variable with missing data is modeled conditionally using the other variables in the data before filling in the missing values.
Note: Multivariate imputation by chained equations (MICE), sometimes called "fully conditional specification" or "sequential regression multiple imputation" has emerged in the statistical literature as one principled method of addressing missing data. Creating multiple imputations, as opposed to single imputations, accounts for the statistical uncertainty in the imputations. In addition, the chained equations approach is very flexible and can handle variables of varying types (e.g., continuous or binary) as well as complexities such as bounds or survey skip patterns.
References:
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3074241/
https://docs.microsoft.com/en-us/azure/machine-learning/studio-module-reference/clean- missing-data
NewValidDumpsは多くの受験生を助けて彼らにMicrosoftのAppian ACD-201試験に合格させることができるのは我々専門的なチームがMicrosoftのAppian ACD-201試験を研究して解答を詳しく分析しますから。 SAP C_THR86_2405 - もしうちの学習教材を購入した後、試験に不合格になる場合は、私たちが全額返金することを保証いたします。 その結果、自信になる自己は面接のときに、面接官のいろいろな質問を気軽に回答できて、順調にSAP C_THR83_2405向けの会社に入ります。 実は、彼らが試験に合格したコツは我々NewValidDumpsの提供するMicrosoftのSymantec 250-586試験ソフトを利用したんです。 我々SAP C-S4CPB-2408-JPN問題集の通過率は高いので、90%の合格率を保証します。
Updated: May 28, 2022
試験コード:DP-100J
試験名称:Designing and Implementing a Data Science Solution on Azure (DP-100日本語版)
最近更新時間:2024-12-02
問題と解答:全 445 問
Microsoft DP-100J 認定テキスト
ダウンロード
試験コード:DP-100J
試験名称:Designing and Implementing a Data Science Solution on Azure (DP-100日本語版)
最近更新時間:2024-12-02
問題と解答:全 445 問
Microsoft DP-100J 専門知識訓練
ダウンロード
試験コード:DP-100J
試験名称:Designing and Implementing a Data Science Solution on Azure (DP-100日本語版)
最近更新時間:2024-12-02
問題と解答:全 445 問
Microsoft DP-100J 無料試験
ダウンロード