S90.09的中関連問題 資格取得

NewValidDumpsはIT職員としてのあなたに昇進するチャンスを与えられます。NewValidDumps が提供したSOAのS90.09的中関連問題試験に関する一部の無料の問題と解答を利用してみることができます。そうすると、我々の信頼性をテストできます。 NewValidDumpsのITエリートたちは彼らの専門的な目で、最新的なSOAのS90.09的中関連問題試験トレーニング資料に注目していて、うちのSOAのS90.09的中関連問題問題集の高い正確性を保証するのです。もし君はいささかな心配することがあるなら、あなたはうちの商品を購入する前に、NewValidDumpsは無料でサンプルを提供することができます。 このトレーニング資料を持っていたら、試験のために充分の準備をすることができます。

SOA Certification S90.09 自分の幸せは自分で作るものだと思われます。

うちの学習教材の内容は正確性が高くて、SOAのS90.09 - SOA Design & Architecture Lab的中関連問題認定試験に合格する率は100パッセントになっていました。 あなたは弊社の高品質SOA S90.09 受験料過去問試験資料を利用して、一回に試験に合格します。NewValidDumpsのSOA S90.09 受験料過去問問題集は専門家たちが数年間で過去のデータから分析して作成されて、試験にカバーする範囲は広くて、受験生の皆様のお金と時間を節約します。

NewValidDumpsを選ぶなら、きっと君に後悔させません。もし君はいささかな心配することがあるなら、あなたはうちの商品を購入する前に、NewValidDumpsは無料でサンプルを提供することができます。NewValidDumpsのSOAのS90.09的中関連問題問題集を購入するなら、君がSOAのS90.09的中関連問題認定試験に合格する率は100パーセントです。

SOA S90.09的中関連問題 - あなたが順調に試験に合格するように。

多分、S90.09的中関連問題テスト質問の数が伝統的な問題の数倍である。SOA S90.09的中関連問題試験参考書は全ての知識を含めて、全面的です。そして、S90.09的中関連問題試験参考書の問題は本当の試験問題とだいたい同じことであるとわかります。S90.09的中関連問題試験参考書があれば,ほかの試験参考書を勉強する必要がないです。

我々のソフトは多くの受験生にSOAのS90.09的中関連問題試験に合格させました。我々の通過率はいくつ高くても、我々はあなたが試験に失敗したら全額で返金するのを保証します。

S90.09 PDF DEMO:

QUESTION NO: 1
You are told that in this service composition architecture, all four services are exchanging invoice-related data in an XML format. The services in Service Inventory A are standardized to use a specific XML schema for invoice data. Design standards were not applied to the service contracts used in Service Inventory B, which means that each service uses a different XML schema for the same kind of data. Database A and Database
B can only accept data in the Comma Separated Value (CSV) format and therefore cannot accept XML formatted data. What steps can be taken to enable the planned data exchange between these four services?
A. The Data Model Transformation pattern can be applied so that data model transformation logic is positioned between Service A and Service C and between Service C and Service D . The Data Format Transformation pattern can be applied so that data format transformation logic is positioned between the Service B logic and Database A and between the Service D logic and Database B.
B. The Data Model Transformation pattern can be applied so that data model transformation logic is positioned between Service A and Service C . The Protocol Bridging pattern can be applied so that protocol bridging logic is positioned between Service A and
Service B and between the Service C and Service D . The Data Format Transformation pattern can be applied so that data format transformation logic is positioned between the
Service B logic and Database A and between the Service D logic and Database B.
C. None of the above.
D. The Data Model Transformation pattern can be applied so that data model transformation logic is positioned between Service A and Service B, between Service A and Service C, and between Service C and Service D . The Data Format Transformation pattern can be applied so that data format transformation logic is positioned between the
Service B logic and Database A and between the Service D logic and Database B.
Answer: D

QUESTION NO: 2
When Service A receives a message from Service Consumer A(1),the message is processed by Component A.
This component first invokes Component B (2), which uses values from the message to query
Database A in order to retrieve additional data.
Component B then returns the additional data to Component A.
Component A then invokes Component C (3), which interacts with the API of a legacy system to retrieve a new data value. Component C then returns the data value back to
Component A.
Next, Component A sends some of the data it has accumulated to Component D (4), which writes the data to a text file that is placed in a specific folder. Component D then waits until this file is imported into a different system via a regularly scheduled batch import. Upon completion of the import, Component D returns a success or failure code back to
Component A.
Component A finally sends a response to Service Consumer A (5) containing all of the data collected so far and Service Consumer A writes all of the data to Database B (6).
Components A, B, C.
and D belong to the Service A service architecture. Database A, the legacy system, and the file folders are shared resources within the IT enterprise.
Service A is a task service that completes an entire business task on its own without having to compose other services. However, you have received many complaints about the reliability of Service A . Specifically, it has three problems. First, when Component B accesses Database A, it may not receive a response for several minutes when the database is being accessed by other applications in the IT enterprise. Secondly, the legacy system accessed by Component C frequently crashes and therefore becomes unavailable for extended periods of time. Third, for Component D to respond to Component A, it must first wait for the batch import of the files to occur. This can take several minutes during which Service Consumer A remains stateful and consumes excessive memory. What steps can be taken to address these three problems?
A. The Legacy Wrapper pattern can be applied so that Component B is separated to wrap the shared database, thereby allowing Component A to interact with this new service instead of directly interacting with the database. The Legacy Wrapper pattern can be applied again so that Component C is separated into a separate service that acts as a wrapper of the legacy system API. Component D can then be separated into a separate service and the Event-Driven Messaging pattern can be applied to establish a publisher- subscriber relationship between this new service and Component A and between Service A and Service Consumer A.
The interaction between Service Consumer A and Component A is then redesigned so that
Component A issues a message back to Service Consumer A
when the event related to the batch import is triggered.
B. The Service Data Replication pattern can be applied so that Component B can access a replicated database instead of having to access the shared Database A directly. The
Legacy Wrapper pattern can be applied so that Component C is separated into a separate service that acts as a wrapper of the legacy system API. Next, the Asynchronous Queuing pattern can be applied so that a messaging queue is positioned between Component A and the new wrapper service, thereby enabling communication during times when the legacy system is unavailable. Finally, Component D is separated into a new service and the
Event-Driven Messaging pattern is applied to establish a publisher-subscriber relationship between this service and Component A and between Service A and Service Consumer A.
The interaction logic is redesigned as follows: Component A interacts with Component B, the new wrapper service, and then issues a request to the new event-driven service. Upon receiving a response triggered by the event related to the batch import, Service A responds to Service Consumer A.
C. The Service Data Replication pattern can be applied so that Component B can access a replicated database instead of having to access the shared Database A directly. The
Legacy Wrapper pattern can be applied so that Component C is separated into a separate service that acts as a wrapper of the legacy system API. Next, the Reliable Messaging pattern can be applied so that acknowledgements are issued from the new wrapper service to Component A, thereby enabling notifying Component A during times when the legacy system is unavailable. Finally, Component D is separated into a separate service and the
Event-Driven Messaging pattern is applied to establish a publisher-subscriber relationship between this new service and Component A.
The interaction between Service Consumer A and Component A is then redesigned so that
Component A first interacts with Component
B and the new wrapper service. Service A then issues a final message back to Service
Consumer A.
D. None of the above.
Answer: B

QUESTION NO: 3
Service A is a task service that is required to carry out a series of updates to a set of databases in order to complete a task. To perform the database updates Service A must interact with three other services, each of which provides standardized data access capabilities.
Service A sends its first update request message to Service B (1), which then responds with a message containing a success or failure code (2). Service A then sends its second update request message to Service C (3), which also responds with a message containing a success or failure code (4). Finally, Service A sends a request message to Service D (5), which responds with its own message containing a success or failure code (6).
You've been asked to change this service composition architecture in order to fulfill a set of new requirements: First, if the database update performed by Service B fails, then it must be logged by Service A.
Secondly, if the database update performed by Service C fails,
then a notification e-mail must be sent out to a human administrator. Third, if the database update performed by either Service C or Service D fails, then both of these updates must be reversed so that the respective databases are restored back to their original states.
What steps can be taken to fulfill these requirements?
A. The Compensating Service Transaction pattern is applied to Service B so that it invokes exception handling logic that logs failed database updates before responding with a failure code back to Service A . Similarly, the Compensating Service Transaction pattern is applied to Service C so that it issues an e-mail notification to a human administrator when a database update fails. The Atomic Service Transaction pattern is applied so that Services
A, C, and D are encompassed in the scope of a transaction that will guarantee that if the database updates performed by either Service C or Service D fails, then both updates will be rolled back. The Service Autonomy principle is further applied to Service A to ensure that it remains consistently available to carry out this sequence of actions.
B. None of the above.
C. The Atomic Service Transaction pattern is applied so that Services A, C, and D are encompassed in the scope of a transaction that will guarantee that if the database updates performed by either Service C or Service D fails, then both updates will be rolled back. The
Compensating Service Transaction pattern is then applied to all services so that the scope of the compensating transaction includes the scope of the atomic transaction. The compensating exception logic that is added to Service D automatically invokes Service B to log the failure condition and Service C to issue the e-mail notification to the human administrator. This way, it is guaranteed that the compensating logic is always executed together with the atomic transaction logic.
D. Service A is updated to perform a logging routine when Service A receives a response message from Service B containing a failure code. Service A is further updated to send an e-mail notification to a human administrator if Service A receives a response message from
Service C containing a failure code. The Atomic Service Transaction pattern is applied so that Services A, C, and D are encompassed in the scope of a transaction that will guarantee that if the database updates performed by either Service C or Service D fails, then both updates will be rolled back.
Answer: D

QUESTION NO: 4
It has been confirmed that Policy A and Policy B are, in fact, the same policy and that the security credential check performed by Service Agent B also needs to be carried out on messages sent to Service B .
How can this service composition architecture be changed to reduce the redundancy of policy content and fulfill the new security requirement?
A. The Policy Centralization pattern can be applied so that Policy A and Policy B are combined into the same policy. The policy enforcement logic is removed from Service
Agent C and Service Agent A is then used to enforce the policy for messages sent to
Service A and Service B . Service Agent B can be used to perform the security credential check for Service A and Service B .
B. None of the above.
C. The Policy Centralization pattern can be applied so that Service Agent A is changed to enforce the policy for messages sent to Service A and Service B and to perform the security credential check for Service A and Service B .
D. The Policy Centralization pattern can be applied so that Policy A and Policy B are combined into the same policy. The Service Agent pattern is then applied to introduce a new service agent (called Service Agent D) which carries out the validation and enforcement of Policy A and Policy B.
Service Agent B can be moved so that it performs
the security credential check for Service B, but not for Service A .
Answer: A

SOAのIBM C1000-156の認定試験は君の実力を考察するテストでございます。 弊社の専門家たちのSOAのEMC D-SNC-DY-00試験への研究はSOAのEMC D-SNC-DY-00ソフトの高効率に保障があります。 Cisco 300-430 - NewValidDumpsは君のために良い訓練ツールを提供し、君のSOA認証試に高品質の参考資料を提供しいたします。 あなたに相応しいLpi 102-500J問題集を購入できさせるには、SOAは問題集の見本を無料に提供し、あなたはダウンロードしてやることができます。 NewValidDumpsの専門家チームがSOAのFortinet FCP_WCS_AD-7.4認証試験に対して最新の短期有効なトレーニングプログラムを研究しました。

Updated: May 25, 2022

S90.09的中関連問題 & S90.09試験対応、S90.09日本語解説集

PDF問題と解答

試験コード:S90.09
試験名称:SOA Design & Architecture Lab
最近更新時間:2024-06-01
問題と解答:全 40
SOA S90.09 最新問題

  ダウンロード


 

模擬試験

試験コード:S90.09
試験名称:SOA Design & Architecture Lab
最近更新時間:2024-06-01
問題と解答:全 40
SOA S90.09 模試エンジン

  ダウンロード


 

オンライン版

試験コード:S90.09
試験名称:SOA Design & Architecture Lab
最近更新時間:2024-06-01
問題と解答:全 40
SOA S90.09 試験勉強書

  ダウンロード


 

S90.09 再テスト