CCA175資料勉強 資格取得

弊社のソフトを使用して、ほとんどのお客様は難しいと思われているClouderaのCCA175資料勉強試験に順調に剛角しました。これも弊社が自信的にあなたに商品を薦める原因です。もし弊社のソフトを使ってあなたは残念で試験に失敗したら、弊社は全額で返金することを保証いたします。 」と思わないでください。ClouderaのCCA175資料勉強試験に申し込んだあなたは自分が合格できないなんてを心配だったら、NewValidDumpsのClouderaのCCA175資料勉強試験トレーニング資料を利用してください。 試験に失敗したら、全額で返金する承諾があります。

Cloudera Certified CCA175 IT認定試験に合格するのは難しいと思いますか。

我々NewValidDumpsはClouderaのCCA175 - CCA Spark and Hadoop Developer Exam資料勉強試験問題集をリリースする以降、多くのお客様の好評を博したのは弊社にとって、大変な名誉なことです。 このCCA175 ダウンロード問題集はあなたを楽に試験に合格させる素晴らしいツールですから、この成功できチャンスを見逃せば絶対後悔になりますから、尻込みしないで急いで行動しましょう。ただ一つの試験の準備をするだけで時間をたくさん無駄にすることをやめてください。

競争力が激しい社会に当たり、我々NewValidDumpsは多くの受験生の中で大人気があるのは受験生の立場からCloudera CCA175資料勉強試験資料をリリースすることです。たとえば、ベストセラーのCloudera CCA175資料勉強問題集は過去のデータを分析して作成ます。ほんとんどお客様は我々NewValidDumpsのCloudera CCA175資料勉強問題集を使用してから試験にうまく合格しましたのは弊社の試験資料の有効性と信頼性を説明できます。

Cloudera CCA175資料勉強問題集を利用して試験に合格できます。

NewValidDumpsのClouderaのCCA175資料勉強試験トレーニング資料は豊富な経験を持っているIT専門家が研究したものです。君がClouderaのCCA175資料勉強問題集を購入したら、私たちは一年間で無料更新サービスを提供することができます。もしClouderaのCCA175資料勉強問題集は問題があれば、或いは試験に不合格になる場合は、全額返金することを保証いたします。

NewValidDumpsにたくさんのIT専門人士がいって、弊社の問題集に社会のITエリートが認定されて、弊社の問題集は試験の大幅カーバして、合格率が100%にまで達します。弊社のみたいなウエブサイトが多くても、彼たちは君の学習についてガイドやオンラインサービスを提供するかもしれないが、弊社はそちらにより勝ちます。

CCA175 PDF DEMO:

QUESTION NO: 1
CORRECT TEXT
Problem Scenario 81 : You have been given MySQL DB with following details. You have been given following product.csv file product.csv productID,productCode,name,quantity,price
1001,PEN,Pen Red,5000,1.23
1002,PEN,Pen Blue,8000,1.25
1003,PEN,Pen Black,2000,1.25
1004,PEC,Pencil 2B,10000,0.48
1005,PEC,Pencil 2H,8000,0.49
1006,PEC,Pencil HB,0,9999.99
Now accomplish following activities.
1 . Create a Hive ORC table using SparkSql
2 . Load this data in Hive table.

QUESTION NO: 2
CORRECT TEXT
Problem Scenario 49 : You have been given below code snippet (do a sum of values by key}, with intermediate output.
val keysWithValuesList = Array("foo=A", "foo=A", "foo=A", "foo=A", "foo=B", "bar=C",
"bar=D", "bar=D")
val data = sc.parallelize(keysWithValuesl_ist}
//Create key value pairs
val kv = data.map(_.split("=")).map(v => (v(0), v(l))).cache()
val initialCount = 0;
val countByKey = kv.aggregateByKey(initialCount)(addToCounts, sumPartitionCounts)
Now define two functions (addToCounts, sumPartitionCounts) such, which will produce following results.
Output 1
countByKey.collect
res3: Array[(String, Int)] = Array((foo,5), (bar,3))
import scala.collection._
val initialSet = scala.collection.mutable.HashSet.empty[String]
val uniqueByKey = kv.aggregateByKey(initialSet)(addToSet, mergePartitionSets)
Now define two functions (addToSet, mergePartitionSets) such, which will produce following results.
Output 2:
uniqueByKey.collect
res4: Array[(String, scala.collection.mutable.HashSet[String])] = Array((foo,Set(B, A}},
(bar,Set(C, D}}}
Answer:
See the explanation for Step by Step Solution and configuration.
Explanation:
Solution :
val addToCounts = (n: Int, v: String) => n + 1
val sumPartitionCounts = (p1: Int, p2: Int} => p1 + p2
val addToSet = (s: mutable.HashSet[String], v: String) => s += v
val mergePartitionSets = (p1: mutable.HashSet[String], p2: mutable.HashSet[String]) => p1
+ += p2

QUESTION NO: 3
. Create a Hive parquet table using SparkSQL and load data in it.
Answer:
See the explanation for Step by Step Solution and configuration.
Explanation:
Solution :
Step 1 : Create this tile in HDFS under following directory (Without header}
/user/cloudera/he/exam/task1/productcsv
Step 2 : Now using Spark-shell read the file as RDD
// load the data into a new RDD
val products = sc.textFile("/user/cloudera/he/exam/task1/product.csv")
// Return the first element in this RDD
prod u cts.fi rst()
Step 3 : Now define the schema using a case class
case class Product(productid: Integer, code: String, name: String, quantity:lnteger, price:
Float)
Step 4 : create an RDD of Product objects
val prdRDD = products.map(_.split(",")).map(p =>
Product(p(0).tolnt,p(1),p(2),p(3}.tolnt,p(4}.toFloat))
prdRDD.first()
prdRDD.count()
Step 5 : Now create data frame val prdDF = prdRDD.toDF()
Step 6 : Now store data in hive warehouse directory. (However, table will not be created } import org.apache.spark.sql.SaveMode
prdDF.write.mode(SaveMode.Overwrite).format("orc").saveAsTable("product_orc_table") step 7:
Now create table using data stored in warehouse directory. With the help of hive.
hive
show tables
CREATE EXTERNAL TABLE products (productid int,code string,name string .quantity int, price float}
STORED AS ore
LOCATION 7user/hive/warehouse/product_orc_table';
Step 8 : Now create a parquet table
import org.apache.spark.sql.SaveMode
prdDF.write.mode(SaveMode.Overwrite).format("parquet").saveAsTable("product_parquet_ table")
Step 9 : Now create table using this
CREATE EXTERNAL TABLE products_parquet (productid int,code string,name string
.quantity int, price float}
STORED AS parquet
LOCATION 7user/hive/warehouse/product_parquet_table';
Step 10 : Check data has been loaded or not.
Select * from products;
Select * from products_parquet;
3. CORRECT TEXT
Problem Scenario 84 : In Continuation of previous question, please accomplish following activities.
1. Select all the products which has product code as null
2. Select all the products, whose name starts with Pen and results should be order by Price descending order.
3. Select all the products, whose name starts with Pen and results should be order by
Price descending order and quantity ascending order.

QUESTION NO: 4
Select top 2 products by price
Answer:
See the explanation for Step by Step Solution and configuration.
Explanation:
Solution :
Step 1 : Select all the products which has product code as null
val results = sqlContext.sql(......SELECT' FROM products WHERE code IS NULL......) results. showQ val results = sqlContext.sql(......SELECT * FROM products WHERE code = NULL ",,M ) results.showQ
Step 2 : Select all the products , whose name starts with Pen and results should be order by Price descending order. val results = sqlContext.sql(......SELECT * FROM products
WHERE name LIKE 'Pen %' ORDER BY price DESC......)
results. showQ
Step 3 : Select all the products , whose name starts with Pen and results should be order by Price descending order and quantity ascending order. val results = sqlContext.sql('.....SELECT * FROM products WHERE name LIKE 'Pen %' ORDER BY price DESC, quantity......) results. showQ
Step 4 : Select top 2 products by price
val results = sqlContext.sql(......SELECT' FROM products ORDER BY price desc
LIMIT2......}
results. show()
4. CORRECT TEXT
Problem Scenario 4: You have been given MySQL DB with following details.
user=retail_dba
password=cloudera
database=retail_db
table=retail_db.categories
jdbc URL = jdbc:mysql://quickstart:3306/retail_db
Please accomplish following activities.
Import Single table categories (Subset data} to hive managed table , where category_id between 1 and 22
Answer:
See the explanation for Step by Step Solution and configuration.
Explanation:
Solution :
Step 1 : Import Single table (Subset data)
sqoop import --connect jdbc:mysql://quickstart:3306/retail_db -username=retail_dba - password=cloudera -table=categories -where "\'category_id\' between 1 and 22" --hive- import --m 1
Note: Here the ' is the same you find on ~ key
This command will create a managed table and content will be created in the following directory.
/user/hive/warehouse/categories
Step 2 : Check whether table is created or not (In Hive)
show tables;
select * from categories;

QUESTION NO: 5
CORRECT TEXT
Problem Scenario 13 : You have been given following mysql database details as well as other info.
user=retail_dba
password=cloudera
database=retail_db
jdbc URL = jdbc:mysql://quickstart:3306/retail_db
Please accomplish following.
1. Create a table in retailedb with following definition.
CREATE table departments_export (department_id int(11), department_name varchar(45), created_date T1MESTAMP DEFAULT NOWQ);
2. Now import the data from following directory into departments_export table,
/user/cloudera/departments new
Answer:
See the explanation for Step by Step Solution and configuration.
Explanation:
Solution :
Step 1 : Login to musql db
mysql --user=retail_dba -password=cloudera
show databases; use retail_db; show tables;
step 2 : Create a table as given in problem statement.
CREATE table departments_export (departmentjd int(11), department_name varchar(45), created_date T1MESTAMP DEFAULT NOW()); show tables;
Step 3 : Export data from /user/cloudera/departmentsnew to new table departments_export sqoop export -connect jdbc:mysql://quickstart:3306/retail_db \
-username retaildba \
--password cloudera \
--table departments_export \
-export-dir /user/cloudera/departments_new \
-batch
Step 4 : Now check the export is correctly done or not. mysql -user*retail_dba - password=cloudera show databases; use retail _db;
show tables;
select' from departments_export;

競争がますます激しいIT業種では、ClouderaのTeraData TDVAN5試験の認定は欠くことができない認証です。 ClouderaのIBM C1000-027試験に合格することは容易なことではなくて、良い訓練ツールは成功の保証でNewValidDumpsは君の試験の問題を準備してしまいました。 CREST CPTIA - やってみて第一歩を進める勇気があります。 Microsoft PL-600J - どんな業界で自分に良い昇進機会があると希望する職人がとても多いと思って、IT業界にも例外ではありません。 問題集の全面性と権威性、ClouderaのHP HPE2-B03ソフトがPDF版、オンライン版とソフト版があるという資料のバーションの多様性、購入の前にデモの無料ダウンロード、購入の後でClouderaのHP HPE2-B03ソフトの一年間の無料更新、これ全部は我々の誠の心を示しています。

Updated: May 28, 2022

CCA175資料勉強、Cloudera CCA175過去問題 & CCA Spark And Hadoop Developer Exam

PDF問題と解答

試験コード:CCA175
試験名称:CCA Spark and Hadoop Developer Exam
最近更新時間:2024-11-16
問題と解答:全 96
Cloudera CCA175 模擬解説集

  ダウンロード


 

模擬試験

試験コード:CCA175
試験名称:CCA Spark and Hadoop Developer Exam
最近更新時間:2024-11-16
問題と解答:全 96
Cloudera CCA175 トレーニング

  ダウンロード


 

オンライン版

試験コード:CCA175
試験名称:CCA Spark and Hadoop Developer Exam
最近更新時間:2024-11-16
問題と解答:全 96
Cloudera CCA175 最新問題

  ダウンロード


 

CCA175 関連資料