IT業界で働いている多くの人はClouderaのCCA175試験解答試験の準備が大変だと知っています。我々NewValidDumpsはCCA175試験解答試験の難しさを減らないとは言え、試験準備の難しさを減ることができます。我々の提供する問題集を体験してから、あなたはClouderaのCCA175試験解答試験に合格できる自信を持っています。 試験の準備をするためにNewValidDumpsのClouderaのCCA175試験解答試験トレーニング資料を買うのは冒険的行為と思ったとしたら、あなたの人生の全てが冒険なことになります。一番遠いところへ行った人はリスクを背負うことを恐れない人です。 ほかの人がインタネットでゲームを遊んでいるとき、あなたはオンラインでClouderaのCCA175試験解答の問題集をすることができます。
Cloudera Certified CCA175試験解答 - CCA Spark and Hadoop Developer Exam 我々の承諾だけでなく、お客様に最も全面的で最高のサービスを提供します。 あなたはその他のCloudera CCA175 ダウンロード「CCA Spark and Hadoop Developer Exam」認証試験に関するツールサイトでも見るかも知れませんが、弊社はIT業界の中で重要な地位があって、NewValidDumpsの問題集は君に100%で合格させることと君のキャリアに変らせることだけでなく一年間中で無料でサービスを提供することもできます。
自分の能力を証明するために、CCA175試験解答試験に合格するのは不可欠なことです。弊社のCCA175試験解答真題を入手して、試験に合格する可能性が大きくなります。社会と経済の発展につれて、多くの人はIT技術を勉強します。
NewValidDumpsはIT試験問題集を提供するウエブダイトで、ここによく分かります。最もよくて最新で資料を提供いたします。こうして、君は安心で試験の準備を行ってください。弊社の資料を使って、100%に合格を保証いたします。もし合格しないと、われは全額で返金いたします。NewValidDumpsはずっと君のために最も正確なClouderaのCCA175試験解答「CCA Spark and Hadoop Developer Exam」試験に関する資料を提供して、君が安心に選択することができます。君はオンラインで無料な練習問題をダウンロードできて、100%で試験に合格しましょう。
NewValidDumpsが提供した問題と解答は現代の活力がみなぎる情報技術専門家が豊富な知識と実践経験を活かして研究した成果で、あなたが将来IT分野でより高いレベルに達することに助けを差し上げます。ClouderaのCCA175試験解答の試験の資料やほかのトレーニング資料を提供しているサイトがたくさんありますが、ClouderaのCCA175試験解答の認証試験の高品質の資料を提供しているユニークなサイトはNewValidDumpsです。
QUESTION NO: 1
CORRECT TEXT
Problem Scenario 89 : You have been given below patient data in csv format, patientID,name,dateOfBirth,lastVisitDate
1001,Ah Teck,1991-12-31,2012-01-20
1002,Kumar,2011-10-29,2012-09-20
1003,Ali,2011-01-30,2012-10-21
Accomplish following activities.
1 . Find all the patients whose lastVisitDate between current time and '2012-09-15'
2 . Find all the patients who born in 2011
3 . Find all the patients age
4 . List patients whose last visited more than 60 days ago
5 . Select patients 18 years old or younger
Answer:
See the explanation for Step by Step Solution and configuration.
Explanation:
Solution :
Step 1:
hdfs dfs -mkdir sparksql3
hdfs dfs -put patients.csv sparksql3/
Step 2 : Now in spark shell
// SQLContext entry point for working with structured data
val sqlContext = neworg.apache.spark.sql.SQLContext(sc)
// this is used to implicitly convert an RDD to a DataFrame.
import sqlContext.impIicits._
// Import Spark SQL data types and Row.
import org.apache.spark.sql._
// load the data into a new RDD
val patients = sc.textFilef'sparksqIS/patients.csv")
// Return the first element in this RDD
patients.first()
//define the schema using a case class
case class Patient(patientid: Integer, name: String, dateOfBirth:String , lastVisitDate:
String)
// create an RDD of Product objects
val patRDD = patients.map(_.split(M,M)).map(p => Patient(p(0).tolnt,p(1),p(2),p(3))) patRDD.first() patRDD.count(}
// change RDD of Product objects to a DataFrame val patDF = patRDD.toDF()
// register the DataFrame as a temp table patDF.registerTempTable("patients"}
// Select data from table
val results = sqlContext.sql(......SELECT* FROM patients '.....)
// display dataframe in a tabular format
results.show()
//Find all the patients whose lastVisitDate between current time and '2012-09-15' val results = sqlContext.sql(......SELECT * FROM patients WHERE
TO_DATE(CAST(UNIX_TIMESTAMP(lastVisitDate, 'yyyy-MM-dd') AS TIMESTAMP))
BETWEEN '2012-09-15' AND current_timestamp() ORDER BY lastVisitDate......) results.showQ
/.Find all the patients who born in 2011
val results = sqlContext.sql(......SELECT * FROM patients WHERE
YEAR(TO_DATE(CAST(UNIXJTlMESTAMP(dateOfBirth, 'yyyy-MM-dd') AS
TIMESTAMP))) = 2011 ......)
results. show()
//Find all the patients age
val results = sqlContext.sql(......SELECT name, dateOfBirth, datediff(current_date(),
TO_DATE(CAST(UNIX_TIMESTAMP(dateOfBirth, 'yyyy-MM-dd') AS TlMESTAMP}}}/365
AS age
FROM patients
Mini >
results.show()
//List patients whose last visited more than 60 days ago
-- List patients whose last visited more than 60 days ago
val results = sqlContext.sql(......SELECT name, lastVisitDate FROM patients WHERE datediff(current_date(), TO_DATE(CAST(UNIX_TIMESTAMP[lastVisitDate, 'yyyy-MM-dd')
AS T1MESTAMP))) > 60......);
results. showQ;
-- Select patients 18 years old or younger
SELECT' FROM patients WHERE TO_DATE(CAST(UNIXJTlMESTAMP(dateOfBirth,
'yyyy-MM-dd') AS TIMESTAMP}) > DATE_SUB(current_date(),INTERVAL 18 YEAR); val results = sqlContext.sql(......SELECT' FROM patients WHERE
TO_DATE(CAST(UNIX_TIMESTAMP(dateOfBirth, 'yyyy-MM--dd') AS TIMESTAMP)) >
DATE_SUB(current_date(), T8*365)......);
results. showQ;
val results = sqlContext.sql(......SELECT DATE_SUB(current_date(), 18*365) FROM patients......); results.show();
QUESTION NO: 2
CORRECT TEXT
Problem Scenario 35 : You have been given a file named spark7/EmployeeName.csv
(id,name).
EmployeeName.csv
E01,Lokesh
E02,Bhupesh
E03,Amit
E04,Ratan
E05,Dinesh
E06,Pavan
E07,Tejas
E08,Sheela
E09,Kumar
E10,Venkat
1. Load this file from hdfs and sort it by name and save it back as (id,name) in results directory.
However, make sure while saving it should be able to write In a single file.
Answer:
See the explanation for Step by Step Solution and configuration.
Explanation:
Solution:
Step 1 : Create file in hdfs (We will do using Hue). However, you can first create in local filesystem and then upload it to hdfs.
Step 2 : Load EmployeeName.csv file from hdfs and create PairRDDs
val name = sc.textFile("spark7/EmployeeName.csv")
val namePairRDD = name.map(x=> (x.split(",")(0),x.split(",")(1)))
Step 3 : Now swap namePairRDD RDD.
val swapped = namePairRDD.map(item => item.swap)
step 4: Now sort the rdd by key.
val sortedOutput = swapped.sortByKey()
Step 5 : Now swap the result back
val swappedBack = sortedOutput.map(item => item.swap}
Step 6 : Save the output as a Text file and output must be written in a single file.
swappedBack. repartition(1).saveAsTextFile("spark7/result.txt")
QUESTION NO: 3
CORRECT TEXT
Problem Scenario 96 : Your spark application required extra Java options as below. -
XX:+PrintGCDetails-XX:+PrintGCTimeStamps
Please replace the XXX values correctly
./bin/spark-submit --name "My app" --master local[4] --conf spark.eventLog.enabled=talse -
-conf XXX hadoopexam.jar
Answer:
See the explanation for Step by Step Solution and configuration.
Explanation:
Solution
XXX: Mspark.executoi\extraJavaOptions=-XX:+PrintGCDetails -XX:+PrintGCTimeStamps"
Notes: ./bin/spark-submit \
--class <maln-class>
--master <master-url> \
--deploy-mode <deploy-mode> \
-conf <key>=<value> \
# other options
< application-jar> \
[application-arguments]
Here, conf is used to pass the Spark related contigs which are required for the application to run like any specific property(executor memory) or if you want to override the default property which is set in Spark-default.conf.
QUESTION NO: 4
CORRECT TEXT
Problem Scenario 13 : You have been given following mysql database details as well as other info.
user=retail_dba
password=cloudera
database=retail_db
jdbc URL = jdbc:mysql://quickstart:3306/retail_db
Please accomplish following.
1. Create a table in retailedb with following definition.
CREATE table departments_export (department_id int(11), department_name varchar(45), created_date T1MESTAMP DEFAULT NOWQ);
2. Now import the data from following directory into departments_export table,
/user/cloudera/departments new
Answer:
See the explanation for Step by Step Solution and configuration.
Explanation:
Solution :
Step 1 : Login to musql db
mysql --user=retail_dba -password=cloudera
show databases; use retail_db; show tables;
step 2 : Create a table as given in problem statement.
CREATE table departments_export (departmentjd int(11), department_name varchar(45), created_date T1MESTAMP DEFAULT NOW()); show tables;
Step 3 : Export data from /user/cloudera/departmentsnew to new table departments_export sqoop export -connect jdbc:mysql://quickstart:3306/retail_db \
-username retaildba \
--password cloudera \
--table departments_export \
-export-dir /user/cloudera/departments_new \
-batch
Step 4 : Now check the export is correctly done or not. mysql -user*retail_dba - password=cloudera show databases; use retail _db;
show tables;
select' from departments_export;
QUESTION NO: 5
CORRECT TEXT
Problem Scenario 40 : You have been given sample data as below in a file called spark15/file1.txt
3070811,1963,1096,,"US","CA",,1,
3022811,1963,1096,,"US","CA",,1,56
3033811,1963,1096,,"US","CA",,1,23
Below is the code snippet to process this tile.
val field= sc.textFile("spark15/f ilel.txt")
val mapper = field.map(x=> A)
mapper.map(x => x.map(x=> {B})).collect
Please fill in A and B so it can generate below final output
Array(Array(3070811,1963,109G, 0, "US", "CA", 0,1, 0)
,Array(3022811,1963,1096, 0, "US", "CA", 0,1, 56)
,Array(3033811,1963,1096, 0, "US", "CA", 0,1, 23)
)
Answer:
See the explanation for Step by Step Solution and configuration.
Explanation:
Solution :
A. x.split(","-1)
B. if (x. isEmpty) 0 else x
Cloudera SAP C-TS4CO-2023「CCA Spark and Hadoop Developer Exam」認証試験に合格することが簡単ではなくて、Cloudera SAP C-TS4CO-2023証明書は君にとってはIT業界に入るの一つの手づるになるかもしれません。 Huawei H13-221_V2.0 - 試験に受かったら、あなたはIT業界のエリートになることができます。 ServiceNow CSA-JPN - 今の社会の中で、ネット上で訓練は普及して、弊社は試験問題集を提供する多くのネットの一つでございます。 Splunk SPLK-1005 - これは試験に合格した受験生の一人が言ったのです。 NewValidDumpsは実際の環境で本格的なClouderaのOMG OMG-OCEB2-FUND100「CCA Spark and Hadoop Developer Exam」の試験の準備過程を提供しています。
Updated: May 28, 2022
試験コード:CCA175
試験名称:CCA Spark and Hadoop Developer Exam
最近更新時間:2024-11-16
問題と解答:全 96 問
Cloudera CCA175 試験番号
ダウンロード
試験コード:CCA175
試験名称:CCA Spark and Hadoop Developer Exam
最近更新時間:2024-11-16
問題と解答:全 96 問
Cloudera CCA175 資格講座
ダウンロード
試験コード:CCA175
試験名称:CCA Spark and Hadoop Developer Exam
最近更新時間:2024-11-16
問題と解答:全 96 問
Cloudera CCA175 教育資料
ダウンロード