DP-100J試験問題 資格取得

NewValidDumpsにIT業界のエリートのグループがあって、彼達は自分の経験と専門知識を使ってMicrosoft DP-100J試験問題認証試験に参加する方に対して問題集を研究続けています。君が後悔しないようにもっと少ないお金を使って大きな良い成果を取得するためにNewValidDumpsを選択してください。NewValidDumpsはまた一年間に無料なサービスを更新いたします。 一目でわかる最新の出題傾向でわかりやすい解説と充実の補充問題があります。NewValidDumpsの専門家チームが君の需要を満たすために自分の経験と知識を利用してMicrosoftのDP-100J試験問題認定試験対策模擬テスト問題集が研究しました。 NewValidDumpsの問題と解答は初めに試験を受けるあなたが気楽に成功することを助けるだけではなく、あなたの貴重な時間を節約することもできます。

Microsoft Azure DP-100J あなたは成功な人生がほしいですか。

Microsoft Azure DP-100J試験問題 - Designing and Implementing a Data Science Solution on Azure (DP-100日本語版) 気楽に試験に合格したければ、はやく試しに来てください。 この問題集をミスすればあなたの大きな損失ですよ。長年にわたり、NewValidDumpsはずっとIT認定試験を受験する皆さんに最良かつ最も信頼できる参考資料を提供するために取り組んでいます。

一回だけでMicrosoftのDP-100J試験問題試験に合格したい?NewValidDumpsは君の欲求を満たすために存在するのです。NewValidDumpsは君にとってベストな選択になります。ここには、私たちは君の需要に応じます。

Microsoft DP-100J試験問題 - NewValidDumpsはきっとご存じしています。

自分のIT業界での発展を希望したら、MicrosoftのDP-100J試験問題試験に合格する必要があります。MicrosoftのDP-100J試験問題試験はいくつ難しくても文句を言わないで、我々NewValidDumpsの提供する資料を通して、あなたはMicrosoftのDP-100J試験問題試験に合格することができます。MicrosoftのDP-100J試験問題試験を準備しているあなたに試験に合格させるために、我々NewValidDumpsは模擬試験ソフトを更新し続けています。

あなたはNewValidDumpsの学習教材を購入した後、私たちは一年間で無料更新サービスを提供することができます。MicrosoftのDP-100J試験問題認定試験に合格することはきっと君の職業生涯の輝い将来に大変役に立ちます。

DP-100J PDF DEMO:

QUESTION NO: 1
モデルトレーニング要件に合わせて、順列機能の重要度モジュールを構成する必要がありま
す。
あなたは何をするべきか?回答するには、回答領域のダイアログボックスで適切なオプショ
ンを選択します。
注:それぞれの正しい選択には1ポイントの価値があります。
Answer:
Explanation
Box 1: 500
For Random seed, type a value to use as seed for randomization. If you specify 0 (the default), a number is generated based on the system clock.
A seed value is optional, but you should provide a value if you want reproducibility across runs of the same experiment.
Here we must replicate the findings.
Box 2: Mean Absolute Error
Scenario: Given a trained model and a test dataset, you must compute the Permutation
Feature Importance scores of feature variables. You need to set up the Permutation Feature
Importance module to select the correct metric to investigate the model's accuracy and replicate the findings.
Regression. Choose one of the following: Precision, Recall, Mean Absolute Error , Root
Mean Squared Error, Relative Absolute Error, Relative Squared Error, Coefficient of
Determination References:
https://docs.microsoft.com/en-us/azure/machine-learning/studio-module-
reference/permutation-feature-importan

QUESTION NO: 2
x.1、x2、およびx3の機能に対してscikit-learn
Pythonライブラリを使用して、機能のスケーリングを実行しています。
元のデータとスケーリングされたデータを次の図に示します。
ドロップダウンメニューを使用して、グラフィックに表示される情報に基づいて各質問に回
答する回答選択肢を選択します。
注:それぞれの正しい選択には1ポイントの価値があります。
Answer:
Explanation
Box 1: StandardScaler
The StandardScaler assumes your data is normally distributed within each feature and will scale them such that the distribution is now centred around 0, with a standard deviation of 1.
Example:
All features are now on the same scale relative to one another.
Box 2: Min Max Scaler
Notice that the skewness of the distribution is maintained but the 3 distributions are brought into the same scale so that they overlap.
Box 3: Normalizer
References:
http://benalexkeen.com/feature-scaling-with-scikit-learn/

QUESTION NO: 3
Azure Machine Learning Studioを使用してデータセットを分析しています。
各機能列のp値と一意の値カウントを含む統計サマリーを生成する必要があります。
ユーザーはどちらのモジュールを使用できますか?それぞれの正解は完全な解決策を提示し
ます。
注:それぞれの正しい選択には1ポイントの価値があります。
A. インジケーター値に変換
B. カウントテーブルのエクスポート
C. 線形相関の計算
D. データの要約
E. Pythonスクリプトの実行
Answer: B,C
Explanation
The Export Count Table module is provided for backward compatibility with experiments that use the Build Count Table (deprecated) and Count Featurizer (deprecated) modules.
E: Summarize Data statistics are useful when you want to understand the characteristics of the complete dataset. For example, you might need to know:
How many missing values are there in each column?
How many unique values are there in a feature column?
What is the mean and standard deviation for each column?
The module calculates the important scores for each column, and returns a row of summary statistics for each variable (data column) provided as input.
References:
https://docs.microsoft.com/en-us/azure/machine-learning/studio-module-reference/export- count-table
https://docs.microsoft.com/en-us/azure/machine-learning/studio-module-
reference/summarize-data

QUESTION NO: 4
分類タスクを解決しています。
データセットが不均衡です。
あなたは、分類精度を向上させるためにAzureの機械学習Studioのモジュールを選択する必
要があります。
あなたはどちらのモジュールを使用する必要がありますか?
A. フィルタに基づく機能の選択
B. 順列機能の重要性
C. フィッシャー線形判別分析。
D. の合成少数オーバーサンプリング技術(撃ち)
Answer: D
Explanation
Use the SMOTE module in Azure Machine Learning Studio (classic) to increase the number of underepresented cases in a dataset used for machine learning. SMOTE is a better way of increasing the number of rare cases than simply duplicating existing cases.
You connect the SMOTE module to a dataset that is imbalanced. There are many reasons why a dataset might be imbalanced: the category you are targeting might be very rare in the population, or the data might simply be difficult to collect. Typically, you use SMOTE when the class you want to analyze is under-represented.
Reference:
https://docs.microsoft.com/en-us/azure/machine-learning/studio-module-reference/smote

QUESTION NO: 5
注:この質問は、同じシナリオを提示する一連の質問の一部です。シリーズの各質問には、
記載された目標を達成する可能性のある独自のソリューションが含まれています。一部の質
問セットには複数の正しい解決策がある場合もあれば、正しい解決策がない場合もあります

このセクションの質問に回答すると、その質問に戻ることはできません。その結果、これら
の質問はレビュー画面に表示されません。
複数の列に欠損値を含む数値データセットを分析しています。
機能セットの次元に影響を与えることなく、適切な操作を使用して欠損値を消去する必要が
あります。
すべての値を含めるには、完全なデータセットを分析する必要があります。
解決策:連鎖方程式による多重代入(MICE)メソッドを使用して、各欠損値を置き換えま
す。
ソリューションは目標を達成していますか?
A. はい
B. いいえ
Answer: A
Explanation
Replace using MICE: For each missing value, this option assigns a new value, which is calculated by using a method described in the statistical literature as "Multivariate Imputation using Chained Equations" or
"Multiple Imputation by Chained Equations". With a multiple imputation method, each variable with missing data is modeled conditionally using the other variables in the data before filling in the missing values.
Note: Multivariate imputation by chained equations (MICE), sometimes called "fully conditional specification" or "sequential regression multiple imputation" has emerged in the statistical literature as one principled method of addressing missing data. Creating multiple imputations, as opposed to single imputations, accounts for the statistical uncertainty in the imputations. In addition, the chained equations approach is very flexible and can handle variables of varying types (e.g., continuous or binary) as well as complexities such as bounds or survey skip patterns.
References:
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3074241/
https://docs.microsoft.com/en-us/azure/machine-learning/studio-module-reference/clean- missing-data

あなたは自分の望ましいMicrosoft Microsoft AZ-500問題集を選らんで、学びから更なる成長を求められます。 我々は力の限りにあなたにMicrosoftのMicrosoft SC-400J試験に合格します。 また、WGU Web-Development-Foundation問題集に疑問があると、メールで問い合わせてください。 我々NewValidDumpsの提供するMicrosoftのMicrosoft DP-203J試験のソフトを利用した多くのお客様はこのような感じがあります。 人によって目標が違いますが、あなたにMicrosoft CompTIA CV0-003J試験に順調に合格できるのは我々の共同の目標です。

Updated: May 28, 2022

DP-100J試験問題 & Microsoft Designing And Implementing A Data Science Solution On Azure Dp 100日本語版試験復習

PDF問題と解答

試験コード:DP-100J
試験名称:Designing and Implementing a Data Science Solution on Azure (DP-100日本語版)
最近更新時間:2024-12-19
問題と解答:全 445
Microsoft DP-100J 認定テキスト

  ダウンロード


 

模擬試験

試験コード:DP-100J
試験名称:Designing and Implementing a Data Science Solution on Azure (DP-100日本語版)
最近更新時間:2024-12-19
問題と解答:全 445
Microsoft DP-100J 専門知識訓練

  ダウンロード


 

オンライン版

試験コード:DP-100J
試験名称:Designing and Implementing a Data Science Solution on Azure (DP-100日本語版)
最近更新時間:2024-12-19
問題と解答:全 445
Microsoft DP-100J 難易度

  ダウンロード


 

DP-100J 資格復習テキスト