DP-100J最新日本語版参考書 資格取得

NewValidDumpsが提供したMicrosoftのDP-100J最新日本語版参考書トレーニング資料を利用したら、MicrosoftのDP-100J最新日本語版参考書認定試験に受かることはたやすくなります。NewValidDumpsがデザインしたトレーニングツールはあなたが一回で試験に合格することにヘルプを差し上げられます。NewValidDumpsのMicrosoftのDP-100J最新日本語版参考書トレーニング資料即ち問題と解答をダウンロードする限り、気楽に試験に受かることができるようになります。 試験に良いの準備と自信がとても必要だと思います。使用して私たちNewValidDumpsが提供した対応性練習問題が君にとってはなかなかよいサイトだと思います。 あなたが自分のキャリアでの異なる条件で自身の利点を発揮することを助けられます。

その中で、DP-100J最新日本語版参考書認定試験は最も重要な一つです。

Microsoft Azure DP-100J最新日本語版参考書 - Designing and Implementing a Data Science Solution on Azure (DP-100日本語版) NewValidDumpsがあなたに美しい未来を差し上げ、将来あなたはNewValidDumps領域でより広い道が行くことができ、情報技術の領域で効率的に仕事することもできます。 NewValidDumpsのMicrosoftのDP-100J 最新日本語版参考書試験トレーニング資料を使ったら、君のMicrosoftのDP-100J 最新日本語版参考書認定試験に合格するという夢が叶えます。なぜなら、それはMicrosoftのDP-100J 最新日本語版参考書認定試験に関する必要なものを含まれるからです。

あなたは夢を実現したいのなら、プロなトレーニングを選んだらいいです。NewValidDumpsは専門的にIT認証トレーニング資料を提供するサイトです。NewValidDumpsはあなたのそばにいてさしあげて、あなたの成功を保障します。

Microsoft DP-100J最新日本語版参考書 - それは正確性が高くて、カバー率も広いです。

NewValidDumpsは多くのIT職員の夢を達成することであるウェブサイトです。IT夢を持っていたら、速くNewValidDumpsに来ましょう。 NewValidDumpsにはすごいトレーニング即ち MicrosoftのDP-100J最新日本語版参考書試験トレーニング資料があります。これはIT職員の皆が熱望しているものです。あなたが試験に合格することを助けられますから。

もちろん、我々はあなたに一番安心させるのは我々の開発する多くの受験生に合格させるMicrosoftのDP-100J最新日本語版参考書試験のソフトウェアです。我々はあなたに提供するのは最新で一番全面的なMicrosoftのDP-100J最新日本語版参考書問題集で、最も安全な購入保障で、最もタイムリーなMicrosoftのDP-100J最新日本語版参考書試験のソフトウェアの更新です。

DP-100J PDF DEMO:

QUESTION NO: 1
機械学習モデルを使用してインテリジェントなソリューションを構築しています。
環境は次の要件をサポートする必要があります。
*データサイエンティストはクラウド環境でノートブックを構築する必要がある
*データサイエンティストは、機械学習パイプラインで自動フィーチャエンジニアリングと
モデル構築を使用する必要があります。
*動的なワーカー割り当てでSparkインスタンスを使用して再トレーニングするには、ノート
ブックを展開する必要があります。
*ノートブックは、ローカルでバージョン管理するためにエクスポート可能である必要があ
ります。
環境を作成する必要があります。
どの4つのアクションを順番に実行する必要がありますか?回答するには、適切なアクショ
ンをアクションのリストから回答エリアに移動し、正しい順序に並べます。
Answer:
Explanation
Step 1: Create an Azure HDInsight cluster to include the Apache Spark Mlib library Step 2:
Install Microsot Machine Learning for Apache Spark You install AzureML on your Azure
HDInsight cluster.
Microsoft Machine Learning for Apache Spark (MMLSpark) provides a number of deep learning and data science tools for Apache Spark, including seamless integration of Spark
Machine Learning pipelines with Microsoft Cognitive Toolkit (CNTK) and OpenCV, enabling you to quickly create powerful, highly-scalable predictive and analytical models for large image and text datasets.
Step 3: Create and execute the Zeppelin notebooks on the cluster
Step 4: When the cluster is ready, export Zeppelin notebooks to a local environment.
Notebooks must be exportable to be version controlled locally.
References:
https://docs.microsoft.com/en-us/azure/hdinsight/spark/apache-spark-zeppelin-notebook
https://azuremlbuild.blob.core.windows.net/pysparkapi/intro.html

QUESTION NO: 2
Azure Machine Learning
Studioで新しい実験を作成します。多くの列に欠損値がある小さなデータセットがあります
。データでは、各列に予測変数を適用する必要はありません。欠落データの処理モジュール
を使用して、欠落データを処理する予定です。
データクリーニング方法を選択する必要があります。
どの方法を使用する必要がありますか?
A. 確率的PACを使用して置換
B. 正規化
C. MICEを使用して交換
D. 合成マイノリティ
Answer: A

QUESTION NO: 3
注:この質問は、同じシナリオを提示する一連の質問の一部です。シリーズの各質問には、
記載された目標を達成する可能性のある独自のソリューションが含まれています。一部の質
問セットには複数の正しい解決策がある場合もあれば、正しい解決策がない場合もあります

このセクションの質問に回答すると、その質問に戻ることはできません。その結果、これら
の質問はレビュー画面に表示されません。
複数の列に欠損値を含む数値データセットを分析しています。
機能セットの次元に影響を与えることなく、適切な操作を使用して欠損値を消去する必要が
あります。
すべての値を含めるには、完全なデータセットを分析する必要があります。
解決策:連鎖方程式による多重代入(MICE)メソッドを使用して、各欠損値を置き換えま
す。
ソリューションは目標を達成していますか?
A. はい
B. いいえ
Answer: A
Explanation
Replace using MICE: For each missing value, this option assigns a new value, which is calculated by using a method described in the statistical literature as "Multivariate Imputation using Chained Equations" or
"Multiple Imputation by Chained Equations". With a multiple imputation method, each variable with missing data is modeled conditionally using the other variables in the data before filling in the missing values.
Note: Multivariate imputation by chained equations (MICE), sometimes called "fully conditional specification" or "sequential regression multiple imputation" has emerged in the statistical literature as one principled method of addressing missing data. Creating multiple imputations, as opposed to single imputations, accounts for the statistical uncertainty in the imputations. In addition, the chained equations approach is very flexible and can handle variables of varying types (e.g., continuous or binary) as well as complexities such as bounds or survey skip patterns.
References:
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3074241/
https://docs.microsoft.com/en-us/azure/machine-learning/studio-module-reference/clean- missing-data

QUESTION NO: 4
Azure Machine Learning Studioを使用してデータセットを分析しています。
各機能列のp値と一意の値カウントを含む統計サマリーを生成する必要があります。
ユーザーはどちらのモジュールを使用できますか?それぞれの正解は完全な解決策を提示し
ます。
注:それぞれの正しい選択には1ポイントの価値があります。
A. インジケーター値に変換
B. カウントテーブルのエクスポート
C. 線形相関の計算
D. データの要約
E. Pythonスクリプトの実行
Answer: B,C
Explanation
The Export Count Table module is provided for backward compatibility with experiments that use the Build Count Table (deprecated) and Count Featurizer (deprecated) modules.
E: Summarize Data statistics are useful when you want to understand the characteristics of the complete dataset. For example, you might need to know:
How many missing values are there in each column?
How many unique values are there in a feature column?
What is the mean and standard deviation for each column?
The module calculates the important scores for each column, and returns a row of summary statistics for each variable (data column) provided as input.
References:
https://docs.microsoft.com/en-us/azure/machine-learning/studio-module-reference/export- count-table
https://docs.microsoft.com/en-us/azure/machine-learning/studio-module-
reference/summarize-data

QUESTION NO: 5
モデルトレーニング要件に合わせて、順列機能の重要度モジュールを構成する必要がありま
す。
あなたは何をするべきか?回答するには、回答領域のダイアログボックスで適切なオプショ
ンを選択します。
注:それぞれの正しい選択には1ポイントの価値があります。
Answer:
Explanation
Box 1: 500
For Random seed, type a value to use as seed for randomization. If you specify 0 (the default), a number is generated based on the system clock.
A seed value is optional, but you should provide a value if you want reproducibility across runs of the same experiment.
Here we must replicate the findings.
Box 2: Mean Absolute Error
Scenario: Given a trained model and a test dataset, you must compute the Permutation
Feature Importance scores of feature variables. You need to set up the Permutation Feature
Importance module to select the correct metric to investigate the model's accuracy and replicate the findings.
Regression. Choose one of the following: Precision, Recall, Mean Absolute Error , Root
Mean Squared Error, Relative Absolute Error, Relative Squared Error, Coefficient of
Determination References:
https://docs.microsoft.com/en-us/azure/machine-learning/studio-module-
reference/permutation-feature-importan

CompTIA CS0-003 - そうしたら、この資料があなたに適用するかどうかを確かめてから購入することができます。 MicrosoftのAmazon SAA-C03-JPNの購入の前にあなたの無料の試しから、購入の後での一年間の無料更新まで我々はあなたのMicrosoftのAmazon SAA-C03-JPN試験に一番信頼できるヘルプを提供します。 HRCI PHRi - そうすると、この参考書が確かにあなたが楽に試験に合格する保障ということをきっと知るようになります。 SAP E-BW4HANA214 - 社会と経済の発展につれて、多くの人はIT技術を勉強します。 従って、すぐに自分の弱点や欠点を識別することができ、正しく次のGoogle Cloud-Digital-Leader学習内容を手配することもできます。

Updated: May 28, 2022

DP-100J最新日本語版参考書 & DP-100J専門試験、DP-100J日本語解説集

PDF問題と解答

試験コード:DP-100J
試験名称:Designing and Implementing a Data Science Solution on Azure (DP-100日本語版)
最近更新時間:2024-12-01
問題と解答:全 445
Microsoft DP-100J 受験対策書

  ダウンロード


 

模擬試験

試験コード:DP-100J
試験名称:Designing and Implementing a Data Science Solution on Azure (DP-100日本語版)
最近更新時間:2024-12-01
問題と解答:全 445
Microsoft DP-100J 試験準備

  ダウンロード


 

オンライン版

試験コード:DP-100J
試験名称:Designing and Implementing a Data Science Solution on Azure (DP-100日本語版)
最近更新時間:2024-12-01
問題と解答:全 445
Microsoft DP-100J 試験参考書

  ダウンロード


 

DP-100J 模擬練習