DP-100J問題トレーリング 資格取得

我々NewValidDumpsはMicrosoftのDP-100J問題トレーリング試験の最高の通過率を保証してMicrosoftのDP-100J問題トレーリングソフトの無料のデモと一年間の無料更新を承諾します。あなたに安心させるために、我々はあなたがMicrosoftのDP-100J問題トレーリング試験に失敗したら全額で返金するのを保証します。NewValidDumpsはあなたのMicrosoftのDP-100J問題トレーリング試験を準備する間あなたの最もよい友達です。 我々NewValidDumpsはMicrosoftのDP-100J問題トレーリング試験問題集をリリースする以降、多くのお客様の好評を博したのは弊社にとって、大変な名誉なことです。また、我々はさらに認可を受けられるために、皆様の一切の要求を満足できて喜ぶ気持ちでずっと協力し、完備かつ精確のDP-100J問題トレーリング試験問題集を開発するのに準備します。 英語版と日本語版の内容は同じですけど、言語だけ違いがあります。

Microsoft Azure DP-100J 我が社のサービスもいいです。

だから、弊社の提供するDP-100J - Designing and Implementing a Data Science Solution on Azure (DP-100日本語版)問題トレーリング問題集を暗記すれば、きっと試験に合格できます。 試験にパースする原因は我々問題集の全面的で最新版です。どのようにMicrosoft DP-100J 最新資料試験に準備すると悩んでいますか。

NewValidDumpsにたくさんのIT専門人士がいって、弊社の問題集に社会のITエリートが認定されて、弊社の問題集は試験の大幅カーバして、合格率が100%にまで達します。弊社のみたいなウエブサイトが多くても、彼たちは君の学習についてガイドやオンラインサービスを提供するかもしれないが、弊社はそちらにより勝ちます。NewValidDumpsは同業の中でそんなに良い地位を取るの原因は弊社のかなり正確な試験の練習問題と解答そえに迅速の更新で、このようにとても良い成績がとられています。

Microsoft DP-100J問題トレーリング - そうだったら、下記のものを読んでください。

MicrosoftのDP-100J問題トレーリング認定試験は人気があるIT認証に属するもので、野心家としてのIT専門家の念願です。このような受験生はDP-100J問題トレーリング認定試験で高い点数を取得して、自分の構成ファイルは市場の需要と互換性があるように充分な準備をするのは必要です。

NewValidDumpsは君にとってベストな選択になります。ここには、私たちは君の需要に応じます。

DP-100J PDF DEMO:

QUESTION NO: 1
モデルトレーニング要件に合わせて、順列機能の重要度モジュールを構成する必要がありま
す。
あなたは何をするべきか?回答するには、回答領域のダイアログボックスで適切なオプショ
ンを選択します。
注:それぞれの正しい選択には1ポイントの価値があります。
Answer:
Explanation
Box 1: 500
For Random seed, type a value to use as seed for randomization. If you specify 0 (the default), a number is generated based on the system clock.
A seed value is optional, but you should provide a value if you want reproducibility across runs of the same experiment.
Here we must replicate the findings.
Box 2: Mean Absolute Error
Scenario: Given a trained model and a test dataset, you must compute the Permutation
Feature Importance scores of feature variables. You need to set up the Permutation Feature
Importance module to select the correct metric to investigate the model's accuracy and replicate the findings.
Regression. Choose one of the following: Precision, Recall, Mean Absolute Error , Root
Mean Squared Error, Relative Absolute Error, Relative Squared Error, Coefficient of
Determination References:
https://docs.microsoft.com/en-us/azure/machine-learning/studio-module-
reference/permutation-feature-importan

QUESTION NO: 2
x.1、x2、およびx3の機能に対してscikit-learn
Pythonライブラリを使用して、機能のスケーリングを実行しています。
元のデータとスケーリングされたデータを次の図に示します。
ドロップダウンメニューを使用して、グラフィックに表示される情報に基づいて各質問に回
答する回答選択肢を選択します。
注:それぞれの正しい選択には1ポイントの価値があります。
Answer:
Explanation
Box 1: StandardScaler
The StandardScaler assumes your data is normally distributed within each feature and will scale them such that the distribution is now centred around 0, with a standard deviation of 1.
Example:
All features are now on the same scale relative to one another.
Box 2: Min Max Scaler
Notice that the skewness of the distribution is maintained but the 3 distributions are brought into the same scale so that they overlap.
Box 3: Normalizer
References:
http://benalexkeen.com/feature-scaling-with-scikit-learn/

QUESTION NO: 3
Azure Machine Learning Studioを使用してデータセットを分析しています。
各機能列のp値と一意の値カウントを含む統計サマリーを生成する必要があります。
ユーザーはどちらのモジュールを使用できますか?それぞれの正解は完全な解決策を提示し
ます。
注:それぞれの正しい選択には1ポイントの価値があります。
A. インジケーター値に変換
B. カウントテーブルのエクスポート
C. 線形相関の計算
D. データの要約
E. Pythonスクリプトの実行
Answer: B,C
Explanation
The Export Count Table module is provided for backward compatibility with experiments that use the Build Count Table (deprecated) and Count Featurizer (deprecated) modules.
E: Summarize Data statistics are useful when you want to understand the characteristics of the complete dataset. For example, you might need to know:
How many missing values are there in each column?
How many unique values are there in a feature column?
What is the mean and standard deviation for each column?
The module calculates the important scores for each column, and returns a row of summary statistics for each variable (data column) provided as input.
References:
https://docs.microsoft.com/en-us/azure/machine-learning/studio-module-reference/export- count-table
https://docs.microsoft.com/en-us/azure/machine-learning/studio-module-
reference/summarize-data

QUESTION NO: 4
分類タスクを解決しています。
データセットが不均衡です。
あなたは、分類精度を向上させるためにAzureの機械学習Studioのモジュールを選択する必
要があります。
あなたはどちらのモジュールを使用する必要がありますか?
A. フィルタに基づく機能の選択
B. 順列機能の重要性
C. フィッシャー線形判別分析。
D. の合成少数オーバーサンプリング技術(撃ち)
Answer: D
Explanation
Use the SMOTE module in Azure Machine Learning Studio (classic) to increase the number of underepresented cases in a dataset used for machine learning. SMOTE is a better way of increasing the number of rare cases than simply duplicating existing cases.
You connect the SMOTE module to a dataset that is imbalanced. There are many reasons why a dataset might be imbalanced: the category you are targeting might be very rare in the population, or the data might simply be difficult to collect. Typically, you use SMOTE when the class you want to analyze is under-represented.
Reference:
https://docs.microsoft.com/en-us/azure/machine-learning/studio-module-reference/smote

QUESTION NO: 5
注:この質問は、同じシナリオを提示する一連の質問の一部です。シリーズの各質問には、
記載された目標を達成する可能性のある独自のソリューションが含まれています。一部の質
問セットには複数の正しい解決策がある場合もあれば、正しい解決策がない場合もあります

このセクションの質問に回答すると、その質問に戻ることはできません。その結果、これら
の質問はレビュー画面に表示されません。
複数の列に欠損値を含む数値データセットを分析しています。
機能セットの次元に影響を与えることなく、適切な操作を使用して欠損値を消去する必要が
あります。
すべての値を含めるには、完全なデータセットを分析する必要があります。
解決策:連鎖方程式による多重代入(MICE)メソッドを使用して、各欠損値を置き換えま
す。
ソリューションは目標を達成していますか?
A. はい
B. いいえ
Answer: A
Explanation
Replace using MICE: For each missing value, this option assigns a new value, which is calculated by using a method described in the statistical literature as "Multivariate Imputation using Chained Equations" or
"Multiple Imputation by Chained Equations". With a multiple imputation method, each variable with missing data is modeled conditionally using the other variables in the data before filling in the missing values.
Note: Multivariate imputation by chained equations (MICE), sometimes called "fully conditional specification" or "sequential regression multiple imputation" has emerged in the statistical literature as one principled method of addressing missing data. Creating multiple imputations, as opposed to single imputations, accounts for the statistical uncertainty in the imputations. In addition, the chained equations approach is very flexible and can handle variables of varying types (e.g., continuous or binary) as well as complexities such as bounds or survey skip patterns.
References:
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3074241/
https://docs.microsoft.com/en-us/azure/machine-learning/studio-module-reference/clean- missing-data

Huawei H12-821_V1.0 - 現在、書籍の以外にインターネットは知識の宝庫として見られています。 うちのMicrosoftのGoogle Professional-Machine-Learning-Engineer試験トレーニング資料を購入する前に、NewValidDumpsのサイトで、一部分のフリーな試験問題と解答をダンロードでき、試用してみます。 EMC D-DP-FN-01 - それに、我々は一年間の無料更新サービスを提供します。 IAPP CIPP-US - 我々の誠意を信じてください。 受験生の皆さんが一回でMicrosoftのSplunk SPLK-1002試験に合格することを保証します。

Updated: May 28, 2022

DP-100J問題トレーリング、DP-100J絶対合格 - Microsoft DP-100J基礎問題集

PDF問題と解答

試験コード:DP-100J
試験名称:Designing and Implementing a Data Science Solution on Azure (DP-100日本語版)
最近更新時間:2024-12-02
問題と解答:全 445
Microsoft DP-100J 資格取得

  ダウンロード


 

模擬試験

試験コード:DP-100J
試験名称:Designing and Implementing a Data Science Solution on Azure (DP-100日本語版)
最近更新時間:2024-12-02
問題と解答:全 445
Microsoft DP-100J 関連資格知識

  ダウンロード


 

オンライン版

試験コード:DP-100J
試験名称:Designing and Implementing a Data Science Solution on Azure (DP-100日本語版)
最近更新時間:2024-12-02
問題と解答:全 445
Microsoft DP-100J 絶対合格

  ダウンロード


 

DP-100J 試験関連情報