Microsoft DP-100Jファンデーション「Designing and Implementing a Data Science Solution on Azure (DP-100日本語版)」認証試験に合格することが簡単ではなくて、Microsoft DP-100Jファンデーション証明書は君にとってはIT業界に入るの一つの手づるになるかもしれません。しかし必ずしも大量の時間とエネルギーで復習しなくて、弊社が丹精にできあがった問題集を使って、試験なんて問題ではありません。 我々の社員は全日中で客様のお問い合わせをお待ちしております。あなたはNewValidDumpsのDP-100Jファンデーション問題集について、何の質問があると、メールで我々のメールアドレスに送ったりすることができます。 今の社会の中で、ネット上で訓練は普及して、弊社は試験問題集を提供する多くのネットの一つでございます。
Microsoft Azure DP-100Jファンデーション - Designing and Implementing a Data Science Solution on Azure (DP-100日本語版) IT業種で仕事しているあなたは、夢を達成するためにどんな方法を利用するつもりですか。 NewValidDumpsはもっぱらITプロ認証試験に関する知識を提供するのサイトで、ほかのサイト使った人はNewValidDumpsが最高の知識源サイトと比較しますた。NewValidDumpsの商品はとても頼もしい試験の練習問題と解答は非常に正確でございます。
NewValidDumpsのDP-100Jファンデーション教材を購入したら、あなたは一年間の無料アップデートサービスを取得しました。試験問題集が更新されると、NewValidDumpsは直ちにあなたのメールボックスにDP-100Jファンデーション問題集の最新版を送ります。あなたは試験の最新バージョンを提供することを要求することもできます。
NewValidDumpsのMicrosoftのDP-100Jファンデーション「Designing and Implementing a Data Science Solution on Azure (DP-100日本語版)」試験トレーニング資料はPDFぼ形式とソフトウェアの形式で提供して、NewValidDumpsのMicrosoftのDP-100Jファンデーション試験問題と解答に含まれています。DP-100Jファンデーション認定試験の真実の問題に会うかもしれません。そんな問題はパーフェクトと称するに足って、効果的な方法がありますから、どちらのMicrosoftのDP-100Jファンデーション試験に成功を取ることができます。NewValidDumpsのMicrosoftのDP-100Jファンデーション問題集は総合的にすべてのシラバスと複雑な問題をカバーしています。NewValidDumpsのMicrosoftのDP-100Jファンデーションテストの問題と解答は本物の試験の挑戦で、あなたのいつもの考え方を変換しなければなりません。
我々の提供するPDF版のMicrosoftのDP-100Jファンデーション試験の資料はあなたにいつでもどこでも読めさせます。我々もオンライン版とソフト版を提供します。
QUESTION NO: 1
モデルトレーニング要件に合わせて、順列機能の重要度モジュールを構成する必要がありま
す。
あなたは何をするべきか?回答するには、回答領域のダイアログボックスで適切なオプショ
ンを選択します。
注:それぞれの正しい選択には1ポイントの価値があります。
Answer:
Explanation
Box 1: 500
For Random seed, type a value to use as seed for randomization. If you specify 0 (the default), a number is generated based on the system clock.
A seed value is optional, but you should provide a value if you want reproducibility across runs of the same experiment.
Here we must replicate the findings.
Box 2: Mean Absolute Error
Scenario: Given a trained model and a test dataset, you must compute the Permutation
Feature Importance scores of feature variables. You need to set up the Permutation Feature
Importance module to select the correct metric to investigate the model's accuracy and replicate the findings.
Regression. Choose one of the following: Precision, Recall, Mean Absolute Error , Root
Mean Squared Error, Relative Absolute Error, Relative Squared Error, Coefficient of
Determination References:
https://docs.microsoft.com/en-us/azure/machine-learning/studio-module-
reference/permutation-feature-importan
QUESTION NO: 2
x.1、x2、およびx3の機能に対してscikit-learn
Pythonライブラリを使用して、機能のスケーリングを実行しています。
元のデータとスケーリングされたデータを次の図に示します。
ドロップダウンメニューを使用して、グラフィックに表示される情報に基づいて各質問に回
答する回答選択肢を選択します。
注:それぞれの正しい選択には1ポイントの価値があります。
Answer:
Explanation
Box 1: StandardScaler
The StandardScaler assumes your data is normally distributed within each feature and will scale them such that the distribution is now centred around 0, with a standard deviation of 1.
Example:
All features are now on the same scale relative to one another.
Box 2: Min Max Scaler
Notice that the skewness of the distribution is maintained but the 3 distributions are brought into the same scale so that they overlap.
Box 3: Normalizer
References:
http://benalexkeen.com/feature-scaling-with-scikit-learn/
QUESTION NO: 3
Azure Machine Learning Studioを使用してデータセットを分析しています。
各機能列のp値と一意の値カウントを含む統計サマリーを生成する必要があります。
ユーザーはどちらのモジュールを使用できますか?それぞれの正解は完全な解決策を提示し
ます。
注:それぞれの正しい選択には1ポイントの価値があります。
A. インジケーター値に変換
B. カウントテーブルのエクスポート
C. 線形相関の計算
D. データの要約
E. Pythonスクリプトの実行
Answer: B,C
Explanation
The Export Count Table module is provided for backward compatibility with experiments that use the Build Count Table (deprecated) and Count Featurizer (deprecated) modules.
E: Summarize Data statistics are useful when you want to understand the characteristics of the complete dataset. For example, you might need to know:
How many missing values are there in each column?
How many unique values are there in a feature column?
What is the mean and standard deviation for each column?
The module calculates the important scores for each column, and returns a row of summary statistics for each variable (data column) provided as input.
References:
https://docs.microsoft.com/en-us/azure/machine-learning/studio-module-reference/export- count-table
https://docs.microsoft.com/en-us/azure/machine-learning/studio-module-
reference/summarize-data
QUESTION NO: 4
分類タスクを解決しています。
データセットが不均衡です。
あなたは、分類精度を向上させるためにAzureの機械学習Studioのモジュールを選択する必
要があります。
あなたはどちらのモジュールを使用する必要がありますか?
A. フィルタに基づく機能の選択
B. 順列機能の重要性
C. フィッシャー線形判別分析。
D. の合成少数オーバーサンプリング技術(撃ち)
Answer: D
Explanation
Use the SMOTE module in Azure Machine Learning Studio (classic) to increase the number of underepresented cases in a dataset used for machine learning. SMOTE is a better way of increasing the number of rare cases than simply duplicating existing cases.
You connect the SMOTE module to a dataset that is imbalanced. There are many reasons why a dataset might be imbalanced: the category you are targeting might be very rare in the population, or the data might simply be difficult to collect. Typically, you use SMOTE when the class you want to analyze is under-represented.
Reference:
https://docs.microsoft.com/en-us/azure/machine-learning/studio-module-reference/smote
QUESTION NO: 5
注:この質問は、同じシナリオを提示する一連の質問の一部です。シリーズの各質問には、
記載された目標を達成する可能性のある独自のソリューションが含まれています。一部の質
問セットには複数の正しい解決策がある場合もあれば、正しい解決策がない場合もあります
。
このセクションの質問に回答すると、その質問に戻ることはできません。その結果、これら
の質問はレビュー画面に表示されません。
複数の列に欠損値を含む数値データセットを分析しています。
機能セットの次元に影響を与えることなく、適切な操作を使用して欠損値を消去する必要が
あります。
すべての値を含めるには、完全なデータセットを分析する必要があります。
解決策:連鎖方程式による多重代入(MICE)メソッドを使用して、各欠損値を置き換えま
す。
ソリューションは目標を達成していますか?
A. はい
B. いいえ
Answer: A
Explanation
Replace using MICE: For each missing value, this option assigns a new value, which is calculated by using a method described in the statistical literature as "Multivariate Imputation using Chained Equations" or
"Multiple Imputation by Chained Equations". With a multiple imputation method, each variable with missing data is modeled conditionally using the other variables in the data before filling in the missing values.
Note: Multivariate imputation by chained equations (MICE), sometimes called "fully conditional specification" or "sequential regression multiple imputation" has emerged in the statistical literature as one principled method of addressing missing data. Creating multiple imputations, as opposed to single imputations, accounts for the statistical uncertainty in the imputations. In addition, the chained equations approach is very flexible and can handle variables of varying types (e.g., continuous or binary) as well as complexities such as bounds or survey skip patterns.
References:
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3074241/
https://docs.microsoft.com/en-us/azure/machine-learning/studio-module-reference/clean- missing-data
OMG OMG-OCSMP-MU100 - あなたが任意の損失がないようにもし試験に合格しなければNewValidDumpsは全額で返金できます。 我々NewValidDumpsはMicrosoftのSAP C-ARSCC-2404試験問題集をリリースする以降、多くのお客様の好評を博したのは弊社にとって、大変な名誉なことです。 ISACA CRISC - あなた自身のために、証明書をもらいます。 たとえば、ベストセラーのMicrosoft SAP P_BTPA_2408問題集は過去のデータを分析して作成ます。 SAP C_IEE2E_2404 - NewValidDumpsはきっとあなたが成功への良いアシスタントになります。
Updated: May 28, 2022
試験コード:DP-100J
試験名称:Designing and Implementing a Data Science Solution on Azure (DP-100日本語版)
最近更新時間:2024-12-18
問題と解答:全 445 問
Microsoft DP-100J 過去問
ダウンロード
試験コード:DP-100J
試験名称:Designing and Implementing a Data Science Solution on Azure (DP-100日本語版)
最近更新時間:2024-12-18
問題と解答:全 445 問
Microsoft DP-100J 関連合格問題
ダウンロード
試験コード:DP-100J
試験名称:Designing and Implementing a Data Science Solution on Azure (DP-100日本語版)
最近更新時間:2024-12-18
問題と解答:全 445 問
Microsoft DP-100J 模擬問題集
ダウンロード