MicrosoftのDP-100Jトレーリングサンプル認定試験に受かるのはあなたの技能を検証することだけでなく、あなたの専門知識を証明できて、上司は無駄にあなたを雇うことはしないことの証明書です。当面、IT業界でMicrosoftのDP-100Jトレーリングサンプル認定試験の信頼できるソースが必要です。NewValidDumpsはとても良い選択で、DP-100Jトレーリングサンプルの試験を最も短い時間に縮められますから、あなたの費用とエネルギーを節約することができます。 多くの時間とお金がいらなくて20時間だけあって楽に一回にMicrosoftのDP-100Jトレーリングサンプル認定試験を合格できます。NewValidDumpsが提供したMicrosoftのDP-100Jトレーリングサンプル試験問題と解答が真実の試験の練習問題と解答は最高の相似性があります。 近年、IT領域で競争がますます激しくなります。
このような受験生はDP-100J - Designing and Implementing a Data Science Solution on Azure (DP-100日本語版)トレーリングサンプル認定試験で高い点数を取得して、自分の構成ファイルは市場の需要と互換性があるように充分な準備をするのは必要です。 NewValidDumpsのMicrosoftのDP-100J 資格認定問題集を購入したら、私たちは君のために、一年間無料で更新サービスを提供することができます。もし不合格になったら、私たちは全額返金することを保証します。
NewValidDumps はMicrosoftのDP-100Jトレーリングサンプル試験に関連する知識が全部含まれていますから、あなたにとって難しい問題を全て解決して差し上げます。NewValidDumpsのMicrosoftのDP-100Jトレーリングサンプル試験トレーニング資料は必要とするすべての人に成功をもたらすことができます。MicrosoftのDP-100Jトレーリングサンプル試験は挑戦がある認定試験です。
世の中に去年の自分より今年の自分が優れていないのは立派な恥です。それで、IT人材として毎日自分を充実して、DP-100Jトレーリングサンプル問題集を学ぶ必要があります。弊社のDP-100Jトレーリングサンプル問題集はあなたにこのチャンスを全面的に与えられます。あなたは自分の望ましいMicrosoft DP-100Jトレーリングサンプル問題集を選らんで、学びから更なる成長を求められます。心はもはや空しくなく、生活を美しくなります。
最新のDP-100Jトレーリングサンプル試験問題を知りたい場合、試験に合格したとしてもNewValidDumpsは無料で問題集を更新してあげます。NewValidDumpsのDP-100Jトレーリングサンプル教材を購入したら、あなたは一年間の無料アップデートサービスを取得しました。
QUESTION NO: 1
Azure Machine Learning Studioを使用してデータセットを分析しています。
各機能列のp値と一意の値カウントを含む統計サマリーを生成する必要があります。
ユーザーはどちらのモジュールを使用できますか?それぞれの正解は完全な解決策を提示し
ます。
注:それぞれの正しい選択には1ポイントの価値があります。
A. インジケーター値に変換
B. カウントテーブルのエクスポート
C. 線形相関の計算
D. データの要約
E. Pythonスクリプトの実行
Answer: B,C
Explanation
The Export Count Table module is provided for backward compatibility with experiments that use the Build Count Table (deprecated) and Count Featurizer (deprecated) modules.
E: Summarize Data statistics are useful when you want to understand the characteristics of the complete dataset. For example, you might need to know:
How many missing values are there in each column?
How many unique values are there in a feature column?
What is the mean and standard deviation for each column?
The module calculates the important scores for each column, and returns a row of summary statistics for each variable (data column) provided as input.
References:
https://docs.microsoft.com/en-us/azure/machine-learning/studio-module-reference/export- count-table
https://docs.microsoft.com/en-us/azure/machine-learning/studio-module-
reference/summarize-data
QUESTION NO: 2
モデルトレーニング要件に合わせて、順列機能の重要度モジュールを構成する必要がありま
す。
あなたは何をするべきか?回答するには、回答領域のダイアログボックスで適切なオプショ
ンを選択します。
注:それぞれの正しい選択には1ポイントの価値があります。
Answer:
Explanation
Box 1: 500
For Random seed, type a value to use as seed for randomization. If you specify 0 (the default), a number is generated based on the system clock.
A seed value is optional, but you should provide a value if you want reproducibility across runs of the same experiment.
Here we must replicate the findings.
Box 2: Mean Absolute Error
Scenario: Given a trained model and a test dataset, you must compute the Permutation
Feature Importance scores of feature variables. You need to set up the Permutation Feature
Importance module to select the correct metric to investigate the model's accuracy and replicate the findings.
Regression. Choose one of the following: Precision, Recall, Mean Absolute Error , Root
Mean Squared Error, Relative Absolute Error, Relative Squared Error, Coefficient of
Determination References:
https://docs.microsoft.com/en-us/azure/machine-learning/studio-module-
reference/permutation-feature-importan
QUESTION NO: 3
注:この質問は、同じシナリオを提示する一連の質問の一部です。シリーズの各質問には、
記載された目標を達成する可能性のある独自のソリューションが含まれています。一部の質
問セットには複数の正しい解決策がある場合もあれば、正しい解決策がない場合もあります
。
このセクションの質問に回答すると、その質問に戻ることはできません。その結果、これら
の質問はレビュー画面に表示されません。
複数の列に欠損値を含む数値データセットを分析しています。
機能セットの次元に影響を与えることなく、適切な操作を使用して欠損値を消去する必要が
あります。
すべての値を含めるには、完全なデータセットを分析する必要があります。
解決策:連鎖方程式による多重代入(MICE)メソッドを使用して、各欠損値を置き換えま
す。
ソリューションは目標を達成していますか?
A. はい
B. いいえ
Answer: A
Explanation
Replace using MICE: For each missing value, this option assigns a new value, which is calculated by using a method described in the statistical literature as "Multivariate Imputation using Chained Equations" or
"Multiple Imputation by Chained Equations". With a multiple imputation method, each variable with missing data is modeled conditionally using the other variables in the data before filling in the missing values.
Note: Multivariate imputation by chained equations (MICE), sometimes called "fully conditional specification" or "sequential regression multiple imputation" has emerged in the statistical literature as one principled method of addressing missing data. Creating multiple imputations, as opposed to single imputations, accounts for the statistical uncertainty in the imputations. In addition, the chained equations approach is very flexible and can handle variables of varying types (e.g., continuous or binary) as well as complexities such as bounds or survey skip patterns.
References:
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3074241/
https://docs.microsoft.com/en-us/azure/machine-learning/studio-module-reference/clean- missing-data
QUESTION NO: 4
x.1、x2、およびx3の機能に対してscikit-learn
Pythonライブラリを使用して、機能のスケーリングを実行しています。
元のデータとスケーリングされたデータを次の図に示します。
ドロップダウンメニューを使用して、グラフィックに表示される情報に基づいて各質問に回
答する回答選択肢を選択します。
注:それぞれの正しい選択には1ポイントの価値があります。
Answer:
Explanation
Box 1: StandardScaler
The StandardScaler assumes your data is normally distributed within each feature and will scale them such that the distribution is now centred around 0, with a standard deviation of 1.
Example:
All features are now on the same scale relative to one another.
Box 2: Min Max Scaler
Notice that the skewness of the distribution is maintained but the 3 distributions are brought into the same scale so that they overlap.
Box 3: Normalizer
References:
http://benalexkeen.com/feature-scaling-with-scikit-learn/
QUESTION NO: 5
分類タスクを解決しています。
データセットが不均衡です。
あなたは、分類精度を向上させるためにAzureの機械学習Studioのモジュールを選択する必
要があります。
あなたはどちらのモジュールを使用する必要がありますか?
A. フィルタに基づく機能の選択
B. 順列機能の重要性
C. フィッシャー線形判別分析。
D. の合成少数オーバーサンプリング技術(撃ち)
Answer: D
Explanation
Use the SMOTE module in Azure Machine Learning Studio (classic) to increase the number of underepresented cases in a dataset used for machine learning. SMOTE is a better way of increasing the number of rare cases than simply duplicating existing cases.
You connect the SMOTE module to a dataset that is imbalanced. There are many reasons why a dataset might be imbalanced: the category you are targeting might be very rare in the population, or the data might simply be difficult to collect. Typically, you use SMOTE when the class you want to analyze is under-represented.
Reference:
https://docs.microsoft.com/en-us/azure/machine-learning/studio-module-reference/smote
現在IT技術会社に通勤しているあなたは、MicrosoftのHuawei H22-213_V1.0試験認定を取得しましたか?Huawei H22-213_V1.0試験認定は給料の増加とジョブのプロモーションに役立ちます。 NewValidDumpsは先輩の経験を生かして暦年の試験の材料を編集することを通して、最高のScrum PSD問題集を作成しました。 だから、我々社は力の限りで弊社のMicrosoft Oracle 1z1-071試験資料を改善し、改革の変更に応じて更新します。 SAP C_THR85_2411 - うちの商品を使ったら、君は最も早い時間で、簡単に認定試験に合格することができます。 あなたはMicrosoft SC-400試験に不安を持っていますか?Microsoft SC-400参考資料をご覧下さい。
Updated: May 28, 2022
試験コード:DP-100J
試験名称:Designing and Implementing a Data Science Solution on Azure (DP-100日本語版)
最近更新時間:2025-01-04
問題と解答:全 445 問
Microsoft DP-100J 受験対策解説集
ダウンロード
試験コード:DP-100J
試験名称:Designing and Implementing a Data Science Solution on Azure (DP-100日本語版)
最近更新時間:2025-01-04
問題と解答:全 445 問
Microsoft DP-100J 最新日本語版参考書
ダウンロード
試験コード:DP-100J
試験名称:Designing and Implementing a Data Science Solution on Azure (DP-100日本語版)
最近更新時間:2025-01-04
問題と解答:全 445 問
Microsoft DP-100J 無料模擬試験
ダウンロード