DP-100J試験対応 資格取得

自分のIT業界での発展を希望したら、MicrosoftのDP-100J試験対応試験に合格する必要があります。MicrosoftのDP-100J試験対応試験はいくつ難しくても文句を言わないで、我々NewValidDumpsの提供する資料を通して、あなたはMicrosoftのDP-100J試験対応試験に合格することができます。MicrosoftのDP-100J試験対応試験を準備しているあなたに試験に合格させるために、我々NewValidDumpsは模擬試験ソフトを更新し続けています。 心配はありませんし、一心不乱に試験復習に取り組んでいます。他の人はあちこちでMicrosoft DP-100J試験対応試験資料を探しているとき、あなたはすでに勉強中で、準備階段でライバルに先立ちます。 それで、IT人材として毎日自分を充実して、DP-100J試験対応問題集を学ぶ必要があります。

Microsoft Azure DP-100J 弊社の商品が好きなのは弊社のたのしいです。

Microsoft Azure DP-100J試験対応 - Designing and Implementing a Data Science Solution on Azure (DP-100日本語版) あなたは弊社の商品を買ったら一年間に無料でアップサービスが提供された認定試験に合格するまで利用しても喜んでいます。 NewValidDumps を選択して100%の合格率を確保することができて、もし試験に失敗したら、NewValidDumpsが全額で返金いたします。

NewValidDumpsが提供した資料は最も全面的で、しかも更新の最も速いです。NewValidDumpsはその近道を提供し、君の多くの時間と労力も節約します。NewValidDumpsはMicrosoftのDP-100J試験対応認定試験「Designing and Implementing a Data Science Solution on Azure (DP-100日本語版)」に向けてもっともよい問題集を研究しています。

Microsoft DP-100J試験対応 - NewValidDumpsを選んだら、成功への扉を開きます。

生活で他の人が何かやったくれることをいつも要求しないで、私が他の人に何かやってあげられることをよく考えるべきです。職場でも同じです。ボスに偉大な価値を創造してあげたら、ボスは無論あなたをヘアします。これに反して、あなたがずっと普通な職員だったら、遅かれ早かれ解雇されます。ですから、IT認定試験に受かって、自分の能力を高めるべきです。 NewValidDumpsのMicrosoftのDP-100J試験対応「Designing and Implementing a Data Science Solution on Azure (DP-100日本語版)」試験問題集はあなたが成功へのショートカットを与えます。IT 職員はほとんど行動しましたから、あなたはまだ何を待っているのですか。ためらわずにNewValidDumpsのMicrosoftのDP-100J試験対応試験トレーニング資料を購入しましょう。

したがって、NewValidDumpsのDP-100J試験対応問題集も絶えずに更新されています。それに、NewValidDumpsの教材を購入すれば、NewValidDumpsは一年間の無料アップデート・サービスを提供してあげます。

DP-100J PDF DEMO:

QUESTION NO: 1
機械学習モデルを使用してインテリジェントなソリューションを構築しています。
環境は次の要件をサポートする必要があります。
*データサイエンティストはクラウド環境でノートブックを構築する必要がある
*データサイエンティストは、機械学習パイプラインで自動フィーチャエンジニアリングと
モデル構築を使用する必要があります。
*動的なワーカー割り当てでSparkインスタンスを使用して再トレーニングするには、ノート
ブックを展開する必要があります。
*ノートブックは、ローカルでバージョン管理するためにエクスポート可能である必要があ
ります。
環境を作成する必要があります。
どの4つのアクションを順番に実行する必要がありますか?回答するには、適切なアクショ
ンをアクションのリストから回答エリアに移動し、正しい順序に並べます。
Answer:
Explanation
Step 1: Create an Azure HDInsight cluster to include the Apache Spark Mlib library Step 2:
Install Microsot Machine Learning for Apache Spark You install AzureML on your Azure
HDInsight cluster.
Microsoft Machine Learning for Apache Spark (MMLSpark) provides a number of deep learning and data science tools for Apache Spark, including seamless integration of Spark
Machine Learning pipelines with Microsoft Cognitive Toolkit (CNTK) and OpenCV, enabling you to quickly create powerful, highly-scalable predictive and analytical models for large image and text datasets.
Step 3: Create and execute the Zeppelin notebooks on the cluster
Step 4: When the cluster is ready, export Zeppelin notebooks to a local environment.
Notebooks must be exportable to be version controlled locally.
References:
https://docs.microsoft.com/en-us/azure/hdinsight/spark/apache-spark-zeppelin-notebook
https://azuremlbuild.blob.core.windows.net/pysparkapi/intro.html

QUESTION NO: 2
Azure Machine Learning
Studioで新しい実験を作成します。多くの列に欠損値がある小さなデータセットがあります
。データでは、各列に予測変数を適用する必要はありません。欠落データの処理モジュール
を使用して、欠落データを処理する予定です。
データクリーニング方法を選択する必要があります。
どの方法を使用する必要がありますか?
A. 確率的PACを使用して置換
B. 正規化
C. MICEを使用して交換
D. 合成マイノリティ
Answer: A

QUESTION NO: 3
注:この質問は、同じシナリオを提示する一連の質問の一部です。シリーズの各質問には、
記載された目標を達成する可能性のある独自のソリューションが含まれています。一部の質
問セットには複数の正しい解決策がある場合もあれば、正しい解決策がない場合もあります

このセクションの質問に回答すると、その質問に戻ることはできません。その結果、これら
の質問はレビュー画面に表示されません。
複数の列に欠損値を含む数値データセットを分析しています。
機能セットの次元に影響を与えることなく、適切な操作を使用して欠損値を消去する必要が
あります。
すべての値を含めるには、完全なデータセットを分析する必要があります。
解決策:連鎖方程式による多重代入(MICE)メソッドを使用して、各欠損値を置き換えま
す。
ソリューションは目標を達成していますか?
A. はい
B. いいえ
Answer: A
Explanation
Replace using MICE: For each missing value, this option assigns a new value, which is calculated by using a method described in the statistical literature as "Multivariate Imputation using Chained Equations" or
"Multiple Imputation by Chained Equations". With a multiple imputation method, each variable with missing data is modeled conditionally using the other variables in the data before filling in the missing values.
Note: Multivariate imputation by chained equations (MICE), sometimes called "fully conditional specification" or "sequential regression multiple imputation" has emerged in the statistical literature as one principled method of addressing missing data. Creating multiple imputations, as opposed to single imputations, accounts for the statistical uncertainty in the imputations. In addition, the chained equations approach is very flexible and can handle variables of varying types (e.g., continuous or binary) as well as complexities such as bounds or survey skip patterns.
References:
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3074241/
https://docs.microsoft.com/en-us/azure/machine-learning/studio-module-reference/clean- missing-data

QUESTION NO: 4
Azure Machine Learning Studioを使用してデータセットを分析しています。
各機能列のp値と一意の値カウントを含む統計サマリーを生成する必要があります。
ユーザーはどちらのモジュールを使用できますか?それぞれの正解は完全な解決策を提示し
ます。
注:それぞれの正しい選択には1ポイントの価値があります。
A. インジケーター値に変換
B. カウントテーブルのエクスポート
C. 線形相関の計算
D. データの要約
E. Pythonスクリプトの実行
Answer: B,C
Explanation
The Export Count Table module is provided for backward compatibility with experiments that use the Build Count Table (deprecated) and Count Featurizer (deprecated) modules.
E: Summarize Data statistics are useful when you want to understand the characteristics of the complete dataset. For example, you might need to know:
How many missing values are there in each column?
How many unique values are there in a feature column?
What is the mean and standard deviation for each column?
The module calculates the important scores for each column, and returns a row of summary statistics for each variable (data column) provided as input.
References:
https://docs.microsoft.com/en-us/azure/machine-learning/studio-module-reference/export- count-table
https://docs.microsoft.com/en-us/azure/machine-learning/studio-module-
reference/summarize-data

QUESTION NO: 5
モデルトレーニング要件に合わせて、順列機能の重要度モジュールを構成する必要がありま
す。
あなたは何をするべきか?回答するには、回答領域のダイアログボックスで適切なオプショ
ンを選択します。
注:それぞれの正しい選択には1ポイントの価値があります。
Answer:
Explanation
Box 1: 500
For Random seed, type a value to use as seed for randomization. If you specify 0 (the default), a number is generated based on the system clock.
A seed value is optional, but you should provide a value if you want reproducibility across runs of the same experiment.
Here we must replicate the findings.
Box 2: Mean Absolute Error
Scenario: Given a trained model and a test dataset, you must compute the Permutation
Feature Importance scores of feature variables. You need to set up the Permutation Feature
Importance module to select the correct metric to investigate the model's accuracy and replicate the findings.
Regression. Choose one of the following: Precision, Recall, Mean Absolute Error , Root
Mean Squared Error, Relative Absolute Error, Relative Squared Error, Coefficient of
Determination References:
https://docs.microsoft.com/en-us/azure/machine-learning/studio-module-
reference/permutation-feature-importan

HP HPE0-V19 - このサイトはIT認定試験を受けた受験生から広く好評されました。 あるいは、無料で試験Salesforce Health-Cloud-Accredited-Professional問題集を更新してあげるのを選択することもできます。 ServiceNow CIS-ITSM - NewValidDumpsの試験参考書を利用することを通して自分の目標を達成することができますから。 IBM C1000-107 - なぜ受験生のほとんどはNewValidDumpsを選んだのですか。 Fortinet FCP_FAZ_AN-7.4 - もしこの問題集を利用してからやはり試験に不合格になってしまえば、NewValidDumpsは全額で返金することができます。

Updated: May 28, 2022

DP-100J試験対応、Microsoft DP-100J復習資料 & Designing And Implementing A Data Science Solution On Azure Dp 100日本語版

PDF問題と解答

試験コード:DP-100J
試験名称:Designing and Implementing a Data Science Solution on Azure (DP-100日本語版)
最近更新時間:2024-11-17
問題と解答:全 431
Microsoft DP-100J 日本語版復習資料

  ダウンロード


 

模擬試験

試験コード:DP-100J
試験名称:Designing and Implementing a Data Science Solution on Azure (DP-100日本語版)
最近更新時間:2024-11-17
問題と解答:全 431
Microsoft DP-100J 認定テキスト

  ダウンロード


 

オンライン版

試験コード:DP-100J
試験名称:Designing and Implementing a Data Science Solution on Azure (DP-100日本語版)
最近更新時間:2024-11-17
問題と解答:全 431
Microsoft DP-100J 日本語版参考資料

  ダウンロード


 

DP-100J 無料試験