S90.09関連試験 資格取得

NewValidDumpsのSOAのS90.09関連試験「SOA Design & Architecture Lab」試験トレーニング資料は最高のトレーニング資料で、あなたの全てのニーズを満たすことができますから、速く行動しましょう。IT 職員のそれぞれは昇進または高給のために頑張っています。これも現代社会が圧力に満ちている一つの反映です。 SOA S90.09関連試験「SOA Design & Architecture Lab」認証試験に合格することが簡単ではなくて、SOA S90.09関連試験証明書は君にとってはIT業界に入るの一つの手づるになるかもしれません。しかし必ずしも大量の時間とエネルギーで復習しなくて、弊社が丹精にできあがった問題集を使って、試験なんて問題ではありません。 SOAのS90.09関連試験認定試験を受験するために準備をしているあなたは、NewValidDumpsという成功できるチャンスを掴みましたか。

SOA Certification S90.09 きっと望んでいるでしょう。

この目標を達成するのは、あなたにとってIT分野での第一歩だけですが、我々のSOAのS90.09 - SOA Design & Architecture Lab関連試験ソフトを開発するすべての意義です。 あなたは試験の最新バージョンを提供することを要求することもできます。最新のS90.09 日本語試験対策試験問題を知りたい場合、試験に合格したとしてもNewValidDumpsは無料で問題集を更新してあげます。

自分のIT業界での発展を希望したら、SOAのS90.09関連試験試験に合格する必要があります。SOAのS90.09関連試験試験はいくつ難しくても文句を言わないで、我々NewValidDumpsの提供する資料を通して、あなたはSOAのS90.09関連試験試験に合格することができます。SOAのS90.09関連試験試験を準備しているあなたに試験に合格させるために、我々NewValidDumpsは模擬試験ソフトを更新し続けています。

SOA S90.09関連試験 - もちろんありますよ。

あなたに安心にネットでSOAのS90.09関連試験試験の資料を購入させるために、我々NewValidDumpsは国際の最大の安全的な支払システムPaypalと協力してあなたの支払の安全性を保障します。支払ってから、あなたは直ちにSOAのS90.09関連試験試験の資料をダウンロードすることができ、その後の一年間でSOAのS90.09関連試験試験ソフトが更新されたら、我々はあなたを通知します。NewValidDumpsを選ぶのは最高のサービスを選んだことです。

NewValidDumpsのSOAのS90.09関連試験試験トレーニング資料は豊富な経験を持っているIT専門家が研究したものです。君がSOAのS90.09関連試験問題集を購入したら、私たちは一年間で無料更新サービスを提供することができます。

S90.09 PDF DEMO:

QUESTION NO: 1
Service A is a task service that is required to carry out a series of updates to a set of databases in order to complete a task. To perform the database updates Service A must interact with three other services, each of which provides standardized data access capabilities.
Service A sends its first update request message to Service B (1), which then responds with a message containing a success or failure code (2). Service A then sends its second update request message to Service C (3), which also responds with a message containing a success or failure code (4). Finally, Service A sends a request message to Service D (5), which responds with its own message containing a success or failure code (6).
You've been asked to change this service composition architecture in order to fulfill a set of new requirements: First, if the database update performed by Service B fails, then it must be logged by Service A.
Secondly, if the database update performed by Service C fails,
then a notification e-mail must be sent out to a human administrator. Third, if the database update performed by either Service C or Service D fails, then both of these updates must be reversed so that the respective databases are restored back to their original states.
What steps can be taken to fulfill these requirements?
A. The Compensating Service Transaction pattern is applied to Service B so that it invokes exception handling logic that logs failed database updates before responding with a failure code back to Service A . Similarly, the Compensating Service Transaction pattern is applied to Service C so that it issues an e-mail notification to a human administrator when a database update fails. The Atomic Service Transaction pattern is applied so that Services
A, C, and D are encompassed in the scope of a transaction that will guarantee that if the database updates performed by either Service C or Service D fails, then both updates will be rolled back. The Service Autonomy principle is further applied to Service A to ensure that it remains consistently available to carry out this sequence of actions.
B. None of the above.
C. The Atomic Service Transaction pattern is applied so that Services A, C, and D are encompassed in the scope of a transaction that will guarantee that if the database updates performed by either Service C or Service D fails, then both updates will be rolled back. The
Compensating Service Transaction pattern is then applied to all services so that the scope of the compensating transaction includes the scope of the atomic transaction. The compensating exception logic that is added to Service D automatically invokes Service B to log the failure condition and Service C to issue the e-mail notification to the human administrator. This way, it is guaranteed that the compensating logic is always executed together with the atomic transaction logic.
D. Service A is updated to perform a logging routine when Service A receives a response message from Service B containing a failure code. Service A is further updated to send an e-mail notification to a human administrator if Service A receives a response message from
Service C containing a failure code. The Atomic Service Transaction pattern is applied so that Services A, C, and D are encompassed in the scope of a transaction that will guarantee that if the database updates performed by either Service C or Service D fails, then both updates will be rolled back.
Answer: D

QUESTION NO: 2
You are told that in this service composition architecture, all four services are exchanging invoice-related data in an XML format. The services in Service Inventory A are standardized to use a specific XML schema for invoice data. Design standards were not applied to the service contracts used in Service Inventory B, which means that each service uses a different XML schema for the same kind of data. Database A and Database
B can only accept data in the Comma Separated Value (CSV) format and therefore cannot accept XML formatted data. What steps can be taken to enable the planned data exchange between these four services?
A. The Data Model Transformation pattern can be applied so that data model transformation logic is positioned between Service A and Service C and between Service C and Service D . The Data Format Transformation pattern can be applied so that data format transformation logic is positioned between the Service B logic and Database A and between the Service D logic and Database B.
B. The Data Model Transformation pattern can be applied so that data model transformation logic is positioned between Service A and Service C . The Protocol Bridging pattern can be applied so that protocol bridging logic is positioned between Service A and
Service B and between the Service C and Service D . The Data Format Transformation pattern can be applied so that data format transformation logic is positioned between the
Service B logic and Database A and between the Service D logic and Database B.
C. None of the above.
D. The Data Model Transformation pattern can be applied so that data model transformation logic is positioned between Service A and Service B, between Service A and Service C, and between Service C and Service D . The Data Format Transformation pattern can be applied so that data format transformation logic is positioned between the
Service B logic and Database A and between the Service D logic and Database B.
Answer: D

QUESTION NO: 3
When Service A receives a message from Service Consumer A(1),the message is processed by Component A.
This component first invokes Component B (2), which uses values from the message to query
Database A in order to retrieve additional data.
Component B then returns the additional data to Component A.
Component A then invokes Component C (3), which interacts with the API of a legacy system to retrieve a new data value. Component C then returns the data value back to
Component A.
Next, Component A sends some of the data it has accumulated to Component D (4), which writes the data to a text file that is placed in a specific folder. Component D then waits until this file is imported into a different system via a regularly scheduled batch import. Upon completion of the import, Component D returns a success or failure code back to
Component A.
Component A finally sends a response to Service Consumer A (5) containing all of the data collected so far and Service Consumer A writes all of the data to Database B (6).
Components A, B, C.
and D belong to the Service A service architecture. Database A, the legacy system, and the file folders are shared resources within the IT enterprise.
Service A is a task service that completes an entire business task on its own without having to compose other services. However, you have received many complaints about the reliability of Service A . Specifically, it has three problems. First, when Component B accesses Database A, it may not receive a response for several minutes when the database is being accessed by other applications in the IT enterprise. Secondly, the legacy system accessed by Component C frequently crashes and therefore becomes unavailable for extended periods of time. Third, for Component D to respond to Component A, it must first wait for the batch import of the files to occur. This can take several minutes during which Service Consumer A remains stateful and consumes excessive memory. What steps can be taken to address these three problems?
A. The Legacy Wrapper pattern can be applied so that Component B is separated to wrap the shared database, thereby allowing Component A to interact with this new service instead of directly interacting with the database. The Legacy Wrapper pattern can be applied again so that Component C is separated into a separate service that acts as a wrapper of the legacy system API. Component D can then be separated into a separate service and the Event-Driven Messaging pattern can be applied to establish a publisher- subscriber relationship between this new service and Component A and between Service A and Service Consumer A.
The interaction between Service Consumer A and Component A is then redesigned so that
Component A issues a message back to Service Consumer A
when the event related to the batch import is triggered.
B. The Service Data Replication pattern can be applied so that Component B can access a replicated database instead of having to access the shared Database A directly. The
Legacy Wrapper pattern can be applied so that Component C is separated into a separate service that acts as a wrapper of the legacy system API. Next, the Asynchronous Queuing pattern can be applied so that a messaging queue is positioned between Component A and the new wrapper service, thereby enabling communication during times when the legacy system is unavailable. Finally, Component D is separated into a new service and the
Event-Driven Messaging pattern is applied to establish a publisher-subscriber relationship between this service and Component A and between Service A and Service Consumer A.
The interaction logic is redesigned as follows: Component A interacts with Component B, the new wrapper service, and then issues a request to the new event-driven service. Upon receiving a response triggered by the event related to the batch import, Service A responds to Service Consumer A.
C. The Service Data Replication pattern can be applied so that Component B can access a replicated database instead of having to access the shared Database A directly. The
Legacy Wrapper pattern can be applied so that Component C is separated into a separate service that acts as a wrapper of the legacy system API. Next, the Reliable Messaging pattern can be applied so that acknowledgements are issued from the new wrapper service to Component A, thereby enabling notifying Component A during times when the legacy system is unavailable. Finally, Component D is separated into a separate service and the
Event-Driven Messaging pattern is applied to establish a publisher-subscriber relationship between this new service and Component A.
The interaction between Service Consumer A and Component A is then redesigned so that
Component A first interacts with Component
B and the new wrapper service. Service A then issues a final message back to Service
Consumer A.
D. None of the above.
Answer: B

QUESTION NO: 4
It has been confirmed that Policy A and Policy B are, in fact, the same policy and that the security credential check performed by Service Agent B also needs to be carried out on messages sent to Service B .
How can this service composition architecture be changed to reduce the redundancy of policy content and fulfill the new security requirement?
A. The Policy Centralization pattern can be applied so that Policy A and Policy B are combined into the same policy. The policy enforcement logic is removed from Service
Agent C and Service Agent A is then used to enforce the policy for messages sent to
Service A and Service B . Service Agent B can be used to perform the security credential check for Service A and Service B .
B. None of the above.
C. The Policy Centralization pattern can be applied so that Service Agent A is changed to enforce the policy for messages sent to Service A and Service B and to perform the security credential check for Service A and Service B .
D. The Policy Centralization pattern can be applied so that Policy A and Policy B are combined into the same policy. The Service Agent pattern is then applied to introduce a new service agent (called Service Agent D) which carries out the validation and enforcement of Policy A and Policy B.
Service Agent B can be moved so that it performs
the security credential check for Service B, but not for Service A .
Answer: A

Juniper JN0-252 - 心配なく我々の真題を利用してください。 弊社のNewValidDumpsはIT認定試験のソフトの一番信頼たるバンドになるという目標を達成するために、弊社はあなたに最新版のSOAのDatabricks Databricks-Machine-Learning-Associate試験問題集を提供いたします。 NewValidDumpsのSAP C_HAMOD_2404問題集を使用した後、あなたはたくさんののSAP C_HAMOD_2404試験資料を勉強するとか、専門のトレーニング機構に参加するとかなど必要がないと認識します。 EXIN PR2F-JPN - 試験に失敗したら、全額で返金する承諾があります。 弊社のSOA Salesforce Marketing-Cloud-Developer問題集を通して復習してから、真実的に自分の能力の向上を感じ、Salesforce Marketing-Cloud-Developer資格認定を受け取ります。

Updated: May 25, 2022

S90.09関連試験、S90.09テキスト - Soa S90.09資格受験料

PDF問題と解答

試験コード:S90.09
試験名称:SOA Design & Architecture Lab
最近更新時間:2024-05-28
問題と解答:全 40
SOA S90.09 難易度

  ダウンロード


 

模擬試験

試験コード:S90.09
試験名称:SOA Design & Architecture Lab
最近更新時間:2024-05-28
問題と解答:全 40
SOA S90.09 資格復習テキスト

  ダウンロード


 

オンライン版

試験コード:S90.09
試験名称:SOA Design & Architecture Lab
最近更新時間:2024-05-28
問題と解答:全 40
SOA S90.09 無料過去問

  ダウンロード


 

S90.09 日本語版対応参考書