S90.09絶対合格 資格取得

我々はあなたに提供するのは最新で一番全面的なSOAのS90.09絶対合格問題集で、最も安全な購入保障で、最もタイムリーなSOAのS90.09絶対合格試験のソフトウェアの更新です。無料デモはあなたに安心で購入して、購入した後1年間の無料SOAのS90.09絶対合格試験の更新はあなたに安心で試験を準備することができます、あなたは確実に購入を休ませることができます私たちのソフトウェアを試してみてください。もちろん、我々はあなたに一番安心させるのは我々の開発する多くの受験生に合格させるSOAのS90.09絶対合格試験のソフトウェアです。 PDF版のS90.09絶対合格問題集は印刷されることができ、ソフト版のS90.09絶対合格問題集はいくつかのパソコンでも使われることもでき、オンライン版の問題集はパソコンでもスマホでも直接に使われることができます。お客様は自分に相応しいS90.09絶対合格問題集のバージョンを選ぶことができます。 SOAのS90.09絶対合格の購入の前にあなたの無料の試しから、購入の後での一年間の無料更新まで我々はあなたのSOAのS90.09絶対合格試験に一番信頼できるヘルプを提供します。

S90.09絶対合格資料は素晴らしいものです。

あなたは無料でS90.09 - SOA Design & Architecture Lab絶対合格復習教材をダウンロードしたいですか?もちろん、回答ははいです。 弊社のみたいなウエブサイトが多くても、彼たちは君の学習についてガイドやオンラインサービスを提供するかもしれないが、弊社はそちらにより勝ちます。NewValidDumpsは同業の中でそんなに良い地位を取るの原因は弊社のかなり正確な試験の練習問題と解答そえに迅速の更新で、このようにとても良い成績がとられています。

こうして、君は安心で試験の準備を行ってください。弊社の資料を使って、100%に合格を保証いたします。もし合格しないと、われは全額で返金いたします。

SOA S90.09絶対合格 - 成功を祈ります。

NewValidDumpsは実際の環境で本格的なSOAのS90.09絶対合格「SOA Design & Architecture Lab」の試験の準備過程を提供しています。もしあなたは初心者若しくは専門的な技能を高めたかったら、NewValidDumpsのSOAのS90.09絶対合格「SOA Design & Architecture Lab」の試験問題があなたが一歩一歩自分の念願に近くために助けを差し上げます。試験問題と解答に関する質問があるなら、当社は直後に解決方法を差し上げます。しかも、一年間の無料更新サービスを提供します。

まだSOAのS90.09絶対合格認定試験を悩んでいますかこの情報の時代の中で専門なトレーニングを選択するのと思っていますか?良いターゲットのトレーニングを利用すれば有効で君のIT方面の大量の知識を補充 できます。SOAのS90.09絶対合格認定試験「SOA Design & Architecture Lab」によい準備ができて、試験に穏やかな心情をもって扱うことができます。

S90.09 PDF DEMO:

QUESTION NO: 1
You are told that in this service composition architecture, all four services are exchanging invoice-related data in an XML format. The services in Service Inventory A are standardized to use a specific XML schema for invoice data. Design standards were not applied to the service contracts used in Service Inventory B, which means that each service uses a different XML schema for the same kind of data. Database A and Database
B can only accept data in the Comma Separated Value (CSV) format and therefore cannot accept XML formatted data. What steps can be taken to enable the planned data exchange between these four services?
A. The Data Model Transformation pattern can be applied so that data model transformation logic is positioned between Service A and Service C and between Service C and Service D . The Data Format Transformation pattern can be applied so that data format transformation logic is positioned between the Service B logic and Database A and between the Service D logic and Database B.
B. The Data Model Transformation pattern can be applied so that data model transformation logic is positioned between Service A and Service C . The Protocol Bridging pattern can be applied so that protocol bridging logic is positioned between Service A and
Service B and between the Service C and Service D . The Data Format Transformation pattern can be applied so that data format transformation logic is positioned between the
Service B logic and Database A and between the Service D logic and Database B.
C. None of the above.
D. The Data Model Transformation pattern can be applied so that data model transformation logic is positioned between Service A and Service B, between Service A and Service C, and between Service C and Service D . The Data Format Transformation pattern can be applied so that data format transformation logic is positioned between the
Service B logic and Database A and between the Service D logic and Database B.
Answer: D

QUESTION NO: 2
Service A is a task service that is required to carry out a series of updates to a set of databases in order to complete a task. To perform the database updates Service A must interact with three other services, each of which provides standardized data access capabilities.
Service A sends its first update request message to Service B (1), which then responds with a message containing a success or failure code (2). Service A then sends its second update request message to Service C (3), which also responds with a message containing a success or failure code (4). Finally, Service A sends a request message to Service D (5), which responds with its own message containing a success or failure code (6).
You've been asked to change this service composition architecture in order to fulfill a set of new requirements: First, if the database update performed by Service B fails, then it must be logged by Service A.
Secondly, if the database update performed by Service C fails,
then a notification e-mail must be sent out to a human administrator. Third, if the database update performed by either Service C or Service D fails, then both of these updates must be reversed so that the respective databases are restored back to their original states.
What steps can be taken to fulfill these requirements?
A. The Compensating Service Transaction pattern is applied to Service B so that it invokes exception handling logic that logs failed database updates before responding with a failure code back to Service A . Similarly, the Compensating Service Transaction pattern is applied to Service C so that it issues an e-mail notification to a human administrator when a database update fails. The Atomic Service Transaction pattern is applied so that Services
A, C, and D are encompassed in the scope of a transaction that will guarantee that if the database updates performed by either Service C or Service D fails, then both updates will be rolled back. The Service Autonomy principle is further applied to Service A to ensure that it remains consistently available to carry out this sequence of actions.
B. None of the above.
C. The Atomic Service Transaction pattern is applied so that Services A, C, and D are encompassed in the scope of a transaction that will guarantee that if the database updates performed by either Service C or Service D fails, then both updates will be rolled back. The
Compensating Service Transaction pattern is then applied to all services so that the scope of the compensating transaction includes the scope of the atomic transaction. The compensating exception logic that is added to Service D automatically invokes Service B to log the failure condition and Service C to issue the e-mail notification to the human administrator. This way, it is guaranteed that the compensating logic is always executed together with the atomic transaction logic.
D. Service A is updated to perform a logging routine when Service A receives a response message from Service B containing a failure code. Service A is further updated to send an e-mail notification to a human administrator if Service A receives a response message from
Service C containing a failure code. The Atomic Service Transaction pattern is applied so that Services A, C, and D are encompassed in the scope of a transaction that will guarantee that if the database updates performed by either Service C or Service D fails, then both updates will be rolled back.
Answer: D

QUESTION NO: 3
When Service A receives a message from Service Consumer A(1),the message is processed by Component A.
This component first invokes Component B (2), which uses values from the message to query
Database A in order to retrieve additional data.
Component B then returns the additional data to Component A.
Component A then invokes Component C (3), which interacts with the API of a legacy system to retrieve a new data value. Component C then returns the data value back to
Component A.
Next, Component A sends some of the data it has accumulated to Component D (4), which writes the data to a text file that is placed in a specific folder. Component D then waits until this file is imported into a different system via a regularly scheduled batch import. Upon completion of the import, Component D returns a success or failure code back to
Component A.
Component A finally sends a response to Service Consumer A (5) containing all of the data collected so far and Service Consumer A writes all of the data to Database B (6).
Components A, B, C.
and D belong to the Service A service architecture. Database A, the legacy system, and the file folders are shared resources within the IT enterprise.
Service A is a task service that completes an entire business task on its own without having to compose other services. However, you have received many complaints about the reliability of Service A . Specifically, it has three problems. First, when Component B accesses Database A, it may not receive a response for several minutes when the database is being accessed by other applications in the IT enterprise. Secondly, the legacy system accessed by Component C frequently crashes and therefore becomes unavailable for extended periods of time. Third, for Component D to respond to Component A, it must first wait for the batch import of the files to occur. This can take several minutes during which Service Consumer A remains stateful and consumes excessive memory. What steps can be taken to address these three problems?
A. The Legacy Wrapper pattern can be applied so that Component B is separated to wrap the shared database, thereby allowing Component A to interact with this new service instead of directly interacting with the database. The Legacy Wrapper pattern can be applied again so that Component C is separated into a separate service that acts as a wrapper of the legacy system API. Component D can then be separated into a separate service and the Event-Driven Messaging pattern can be applied to establish a publisher- subscriber relationship between this new service and Component A and between Service A and Service Consumer A.
The interaction between Service Consumer A and Component A is then redesigned so that
Component A issues a message back to Service Consumer A
when the event related to the batch import is triggered.
B. The Service Data Replication pattern can be applied so that Component B can access a replicated database instead of having to access the shared Database A directly. The
Legacy Wrapper pattern can be applied so that Component C is separated into a separate service that acts as a wrapper of the legacy system API. Next, the Asynchronous Queuing pattern can be applied so that a messaging queue is positioned between Component A and the new wrapper service, thereby enabling communication during times when the legacy system is unavailable. Finally, Component D is separated into a new service and the
Event-Driven Messaging pattern is applied to establish a publisher-subscriber relationship between this service and Component A and between Service A and Service Consumer A.
The interaction logic is redesigned as follows: Component A interacts with Component B, the new wrapper service, and then issues a request to the new event-driven service. Upon receiving a response triggered by the event related to the batch import, Service A responds to Service Consumer A.
C. The Service Data Replication pattern can be applied so that Component B can access a replicated database instead of having to access the shared Database A directly. The
Legacy Wrapper pattern can be applied so that Component C is separated into a separate service that acts as a wrapper of the legacy system API. Next, the Reliable Messaging pattern can be applied so that acknowledgements are issued from the new wrapper service to Component A, thereby enabling notifying Component A during times when the legacy system is unavailable. Finally, Component D is separated into a separate service and the
Event-Driven Messaging pattern is applied to establish a publisher-subscriber relationship between this new service and Component A.
The interaction between Service Consumer A and Component A is then redesigned so that
Component A first interacts with Component
B and the new wrapper service. Service A then issues a final message back to Service
Consumer A.
D. None of the above.
Answer: B

QUESTION NO: 4
It has been confirmed that Policy A and Policy B are, in fact, the same policy and that the security credential check performed by Service Agent B also needs to be carried out on messages sent to Service B .
How can this service composition architecture be changed to reduce the redundancy of policy content and fulfill the new security requirement?
A. The Policy Centralization pattern can be applied so that Policy A and Policy B are combined into the same policy. The policy enforcement logic is removed from Service
Agent C and Service Agent A is then used to enforce the policy for messages sent to
Service A and Service B . Service Agent B can be used to perform the security credential check for Service A and Service B .
B. None of the above.
C. The Policy Centralization pattern can be applied so that Service Agent A is changed to enforce the policy for messages sent to Service A and Service B and to perform the security credential check for Service A and Service B .
D. The Policy Centralization pattern can be applied so that Policy A and Policy B are combined into the same policy. The Service Agent pattern is then applied to introduce a new service agent (called Service Agent D) which carries out the validation and enforcement of Policy A and Policy B.
Service Agent B can be moved so that it performs
the security credential check for Service B, but not for Service A .
Answer: A

UiPath UiPath-ABAv1 - 我々は心からあなたが首尾よく試験に合格することを願っています。 Palo Alto Networks PCCSE - この試験に合格することがたやすいことではないですから、適切なショートカットを選択するのは成功することの必要です。 SOAのSalesforce Salesforce-MuleSoft-Developer-II認定試験は実は技術専門家を認証する試験です。 Cisco 100-490J - 実は措置を取ったら一回で試験に合格することができます。 EC-COUNCIL 312-39 - でも、成功へのショートカットがを見つけました。

Updated: May 25, 2022

S90.09絶対合格 - S90.09的中関連問題 & SOA Design & Architecture Lab

PDF問題と解答

試験コード:S90.09
試験名称:SOA Design & Architecture Lab
最近更新時間:2024-06-01
問題と解答:全 40
SOA S90.09 対策学習

  ダウンロード


 

模擬試験

試験コード:S90.09
試験名称:SOA Design & Architecture Lab
最近更新時間:2024-06-01
問題と解答:全 40
SOA S90.09 全真問題集

  ダウンロード


 

オンライン版

試験コード:S90.09
試験名称:SOA Design & Architecture Lab
最近更新時間:2024-06-01
問題と解答:全 40
SOA S90.09 復習時間

  ダウンロード


 

S90.09 資格難易度

S90.09 対応資料 関連認定