S90.09模試エンジン 資格取得

空想は人間が素晴らしいアイデアをたくさん思い付くことができますが、行動しなければ何の役に立たないのです。SOAのS90.09模試エンジン認定試験に合格のにどうしたらいいかと困っているより、パソコンを起動して、NewValidDumpsをクリックしたほうがいいです。NewValidDumpsのトレーニング資料は100パーセントの合格率を保証しますから、あなたのニーズを満たすことができます。 NewValidDumpsのS90.09模試エンジン教材を購入したら、あなたは一年間の無料アップデートサービスを取得しました。試験問題集が更新されると、NewValidDumpsは直ちにあなたのメールボックスにS90.09模試エンジン問題集の最新版を送ります。 では、まだ試験に合格するショートカットがわからないあなたは、受験のテクニックを知りたいですか。

もちろんNewValidDumpsのS90.09模試エンジン問題集です。

君がSOAのS90.09 - SOA Design & Architecture Lab模試エンジン問題集を購入したら、私たちは一年間で無料更新サービスを提供することができます。 こうすれば、この問題集を利用して、あなたは勉強の効率を向上させ、十分にS90.09 前提条件試験に準備することができます。もしS90.09 前提条件認定試験を受験したいなら、S90.09 前提条件試験参考書が必要でしょう。

弊社のNewValidDumpsはIT認定試験のソフトの一番信頼たるバンドになるという目標を達成するために、弊社はあなたに最新版のSOAのS90.09模試エンジン試験問題集を提供いたします。弊社のソフトを使用して、ほとんどのお客様は難しいと思われているSOAのS90.09模試エンジン試験に順調に剛角しました。これも弊社が自信的にあなたに商品を薦める原因です。

SOAのSOA S90.09模試エンジン試験のために不安なのですか。

我々NewValidDumpsはSOAのS90.09模試エンジン試験問題集をリリースする以降、多くのお客様の好評を博したのは弊社にとって、大変な名誉なことです。また、我々はさらに認可を受けられるために、皆様の一切の要求を満足できて喜ぶ気持ちでずっと協力し、完備かつ精確のS90.09模試エンジン試験問題集を開発するのに準備します。

そうでない場合、今回使用してからあなたがNewValidDumpsを必要な選択肢として使用できるようになります。私たちが提供するSOAのS90.09模試エンジン試験のソフトウェアはITエリートによって数年以来SOAのS90.09模試エンジン試験の内容から分析して開発されます、オンライン、PDF、およびソフトウェアが3つのバージョンあります。

S90.09 PDF DEMO:

QUESTION NO: 1
It has been confirmed that Policy A and Policy B are, in fact, the same policy and that the security credential check performed by Service Agent B also needs to be carried out on messages sent to Service B .
How can this service composition architecture be changed to reduce the redundancy of policy content and fulfill the new security requirement?
A. The Policy Centralization pattern can be applied so that Policy A and Policy B are combined into the same policy. The policy enforcement logic is removed from Service
Agent C and Service Agent A is then used to enforce the policy for messages sent to
Service A and Service B . Service Agent B can be used to perform the security credential check for Service A and Service B .
B. None of the above.
C. The Policy Centralization pattern can be applied so that Service Agent A is changed to enforce the policy for messages sent to Service A and Service B and to perform the security credential check for Service A and Service B .
D. The Policy Centralization pattern can be applied so that Policy A and Policy B are combined into the same policy. The Service Agent pattern is then applied to introduce a new service agent (called Service Agent D) which carries out the validation and enforcement of Policy A and Policy B.
Service Agent B can be moved so that it performs
the security credential check for Service B, but not for Service A .
Answer: A

QUESTION NO: 2
When Service A receives a message from Service Consumer A(1),the message is processed by Component A.
This component first invokes Component B (2), which uses values from the message to query
Database A in order to retrieve additional data.
Component B then returns the additional data to Component A.
Component A then invokes Component C (3), which interacts with the API of a legacy system to retrieve a new data value. Component C then returns the data value back to
Component A.
Next, Component A sends some of the data it has accumulated to Component D (4), which writes the data to a text file that is placed in a specific folder. Component D then waits until this file is imported into a different system via a regularly scheduled batch import. Upon completion of the import, Component D returns a success or failure code back to
Component A.
Component A finally sends a response to Service Consumer A (5) containing all of the data collected so far and Service Consumer A writes all of the data to Database B (6).
Components A, B, C.
and D belong to the Service A service architecture. Database A, the legacy system, and the file folders are shared resources within the IT enterprise.
Service A is a task service that completes an entire business task on its own without having to compose other services. However, you have received many complaints about the reliability of Service A . Specifically, it has three problems. First, when Component B accesses Database A, it may not receive a response for several minutes when the database is being accessed by other applications in the IT enterprise. Secondly, the legacy system accessed by Component C frequently crashes and therefore becomes unavailable for extended periods of time. Third, for Component D to respond to Component A, it must first wait for the batch import of the files to occur. This can take several minutes during which Service Consumer A remains stateful and consumes excessive memory. What steps can be taken to address these three problems?
A. The Legacy Wrapper pattern can be applied so that Component B is separated to wrap the shared database, thereby allowing Component A to interact with this new service instead of directly interacting with the database. The Legacy Wrapper pattern can be applied again so that Component C is separated into a separate service that acts as a wrapper of the legacy system API. Component D can then be separated into a separate service and the Event-Driven Messaging pattern can be applied to establish a publisher- subscriber relationship between this new service and Component A and between Service A and Service Consumer A.
The interaction between Service Consumer A and Component A is then redesigned so that
Component A issues a message back to Service Consumer A
when the event related to the batch import is triggered.
B. The Service Data Replication pattern can be applied so that Component B can access a replicated database instead of having to access the shared Database A directly. The
Legacy Wrapper pattern can be applied so that Component C is separated into a separate service that acts as a wrapper of the legacy system API. Next, the Asynchronous Queuing pattern can be applied so that a messaging queue is positioned between Component A and the new wrapper service, thereby enabling communication during times when the legacy system is unavailable. Finally, Component D is separated into a new service and the
Event-Driven Messaging pattern is applied to establish a publisher-subscriber relationship between this service and Component A and between Service A and Service Consumer A.
The interaction logic is redesigned as follows: Component A interacts with Component B, the new wrapper service, and then issues a request to the new event-driven service. Upon receiving a response triggered by the event related to the batch import, Service A responds to Service Consumer A.
C. The Service Data Replication pattern can be applied so that Component B can access a replicated database instead of having to access the shared Database A directly. The
Legacy Wrapper pattern can be applied so that Component C is separated into a separate service that acts as a wrapper of the legacy system API. Next, the Reliable Messaging pattern can be applied so that acknowledgements are issued from the new wrapper service to Component A, thereby enabling notifying Component A during times when the legacy system is unavailable. Finally, Component D is separated into a separate service and the
Event-Driven Messaging pattern is applied to establish a publisher-subscriber relationship between this new service and Component A.
The interaction between Service Consumer A and Component A is then redesigned so that
Component A first interacts with Component
B and the new wrapper service. Service A then issues a final message back to Service
Consumer A.
D. None of the above.
Answer: B

QUESTION NO: 3
You are told that in this service composition architecture, all four services are exchanging invoice-related data in an XML format. The services in Service Inventory A are standardized to use a specific XML schema for invoice data. Design standards were not applied to the service contracts used in Service Inventory B, which means that each service uses a different XML schema for the same kind of data. Database A and Database
B can only accept data in the Comma Separated Value (CSV) format and therefore cannot accept XML formatted data. What steps can be taken to enable the planned data exchange between these four services?
A. The Data Model Transformation pattern can be applied so that data model transformation logic is positioned between Service A and Service C and between Service C and Service D . The Data Format Transformation pattern can be applied so that data format transformation logic is positioned between the Service B logic and Database A and between the Service D logic and Database B.
B. The Data Model Transformation pattern can be applied so that data model transformation logic is positioned between Service A and Service C . The Protocol Bridging pattern can be applied so that protocol bridging logic is positioned between Service A and
Service B and between the Service C and Service D . The Data Format Transformation pattern can be applied so that data format transformation logic is positioned between the
Service B logic and Database A and between the Service D logic and Database B.
C. None of the above.
D. The Data Model Transformation pattern can be applied so that data model transformation logic is positioned between Service A and Service B, between Service A and Service C, and between Service C and Service D . The Data Format Transformation pattern can be applied so that data format transformation logic is positioned between the
Service B logic and Database A and between the Service D logic and Database B.
Answer: D

QUESTION NO: 4
Service A is a task service that is required to carry out a series of updates to a set of databases in order to complete a task. To perform the database updates Service A must interact with three other services, each of which provides standardized data access capabilities.
Service A sends its first update request message to Service B (1), which then responds with a message containing a success or failure code (2). Service A then sends its second update request message to Service C (3), which also responds with a message containing a success or failure code (4). Finally, Service A sends a request message to Service D (5), which responds with its own message containing a success or failure code (6).
You've been asked to change this service composition architecture in order to fulfill a set of new requirements: First, if the database update performed by Service B fails, then it must be logged by Service A.
Secondly, if the database update performed by Service C fails,
then a notification e-mail must be sent out to a human administrator. Third, if the database update performed by either Service C or Service D fails, then both of these updates must be reversed so that the respective databases are restored back to their original states.
What steps can be taken to fulfill these requirements?
A. The Compensating Service Transaction pattern is applied to Service B so that it invokes exception handling logic that logs failed database updates before responding with a failure code back to Service A . Similarly, the Compensating Service Transaction pattern is applied to Service C so that it issues an e-mail notification to a human administrator when a database update fails. The Atomic Service Transaction pattern is applied so that Services
A, C, and D are encompassed in the scope of a transaction that will guarantee that if the database updates performed by either Service C or Service D fails, then both updates will be rolled back. The Service Autonomy principle is further applied to Service A to ensure that it remains consistently available to carry out this sequence of actions.
B. None of the above.
C. The Atomic Service Transaction pattern is applied so that Services A, C, and D are encompassed in the scope of a transaction that will guarantee that if the database updates performed by either Service C or Service D fails, then both updates will be rolled back. The
Compensating Service Transaction pattern is then applied to all services so that the scope of the compensating transaction includes the scope of the atomic transaction. The compensating exception logic that is added to Service D automatically invokes Service B to log the failure condition and Service C to issue the e-mail notification to the human administrator. This way, it is guaranteed that the compensating logic is always executed together with the atomic transaction logic.
D. Service A is updated to perform a logging routine when Service A receives a response message from Service B containing a failure code. Service A is further updated to send an e-mail notification to a human administrator if Service A receives a response message from
Service C containing a failure code. The Atomic Service Transaction pattern is applied so that Services A, C, and D are encompassed in the scope of a transaction that will guarantee that if the database updates performed by either Service C or Service D fails, then both updates will be rolled back.
Answer: D

ほんとんどお客様は我々NewValidDumpsのSOA Snowflake ARA-C01問題集を使用してから試験にうまく合格しましたのは弊社の試験資料の有効性と信頼性を説明できます。 NewValidDumpsは多くの受験生を助けて彼らにSOAのPalo Alto Networks PCNSE試験に合格させることができるのは我々専門的なチームがSOAのPalo Alto Networks PCNSE試験を研究して解答を詳しく分析しますから。 数年以来の整理と分析によって開発されたSalesforce CRT-403J問題集は権威的で全面的です。 SOAのSalesforce OmniStudio-Developer試験のソフトは問題数が豊富であなたに大量の練習で能力を高めさせます。 SAP E_S4CPE_2023 - NewValidDumpsは同業の中でそんなに良い地位を取るの原因は弊社のかなり正確な試験の練習問題と解答そえに迅速の更新で、このようにとても良い成績がとられています。

Updated: May 25, 2022

S90.09模試エンジン - S90.09資格参考書、SOA Design & Architecture Lab

PDF問題と解答

試験コード:S90.09
試験名称:SOA Design & Architecture Lab
最近更新時間:2024-05-08
問題と解答:全 40
SOA S90.09 日本語問題集

  ダウンロード


 

模擬試験

試験コード:S90.09
試験名称:SOA Design & Architecture Lab
最近更新時間:2024-05-08
問題と解答:全 40
SOA S90.09 復習対策

  ダウンロード


 

オンライン版

試験コード:S90.09
試験名称:SOA Design & Architecture Lab
最近更新時間:2024-05-08
問題と解答:全 40
SOA S90.09 専門知識

  ダウンロード


 

S90.09 テスト難易度