S90.09復習解答例 資格取得

NewValidDumpsのSOAのS90.09復習解答例試験トレーニング資料は正確性が高くて、カバー率が広くて、値段も安いです。君がうちの学習教材を購入した後、私たちは一年間で無料更新サービスを提供することができます。もしSOAのS90.09復習解答例問題集は問題があれば、或いは試験に不合格になる場合は、全額返金することを保証いたします。 NewValidDumpsのS90.09復習解答例問題集は多くの受験生に検証されたものですから、高い成功率を保証できます。もしこの問題集を利用してからやはり試験に不合格になってしまえば、NewValidDumpsは全額で返金することができます。 もし弊社のソフトを使ってあなたは残念で試験に失敗したら、弊社は全額で返金することを保証いたします。

SOA Certification S90.09 できるだけ100%の通過率を保証使用にしています。

ブームになるIT技術業界でも、多くの人はこういう悩みがあるんですから、SOAのS90.09 - SOA Design & Architecture Lab復習解答例の能力を把握できるのは欠かさせないない技能であると考えられます。 ただ、社会に入るIT卒業生たちは自分能力の不足で、S90.09 試験復習赤本試験向けの仕事を探すのを悩んでいますか?それでは、弊社のSOAのS90.09 試験復習赤本練習問題を選んで実用能力を速く高め、自分を充実させます。その結果、自信になる自己は面接のときに、面接官のいろいろな質問を気軽に回答できて、順調にS90.09 試験復習赤本向けの会社に入ります。

我々社のSOA S90.09復習解答例問題集を購入するかどうかと疑問があると、弊社NewValidDumpsのS90.09復習解答例問題集のサンプルをしてみるのもいいことです。試用した後、我々のS90.09復習解答例問題集はあなたを試験に順調に合格させると信じられます。なぜと言うのは、我々社の専門家は改革に応じて問題の更新と改善を続けていくのは出発点から勝つからです。

SOA S90.09復習解答例 - それは受験者にとって重要な情報です。

我々は受験生の皆様により高いスピードを持っているかつ効率的なサービスを提供することにずっと力を尽くしていますから、あなたが貴重な時間を節約することに助けを差し上げます。NewValidDumps SOAのS90.09復習解答例試験問題集はあなたに問題と解答に含まれている大量なテストガイドを提供しています。インターネットで時勢に遅れないS90.09復習解答例勉強資料を提供するというサイトがあるかもしれませんが、NewValidDumpsはあなたに高品質かつ最新のSOAのS90.09復習解答例トレーニング資料を提供するユニークなサイトです。NewValidDumpsの勉強資料とSOAのS90.09復習解答例に関する指導を従えば、初めてSOAのS90.09復習解答例認定試験を受けるあなたでも一回で試験に合格することができます。

弊社の無料なサンプルを遠慮なくダウンロードしてください。君はまだSOAのS90.09復習解答例認証試験を通じての大きい難度が悩んでいますか? 君はまだSOA S90.09復習解答例認証試験に合格するために寝食を忘れて頑張って復習しますか? 早くてSOA S90.09復習解答例認証試験を通りたいですか?NewValidDumpsを選択しましょう!

S90.09 PDF DEMO:

QUESTION NO: 1
Service A is a task service that is required to carry out a series of updates to a set of databases in order to complete a task. To perform the database updates Service A must interact with three other services, each of which provides standardized data access capabilities.
Service A sends its first update request message to Service B (1), which then responds with a message containing a success or failure code (2). Service A then sends its second update request message to Service C (3), which also responds with a message containing a success or failure code (4). Finally, Service A sends a request message to Service D (5), which responds with its own message containing a success or failure code (6).
You've been asked to change this service composition architecture in order to fulfill a set of new requirements: First, if the database update performed by Service B fails, then it must be logged by Service A.
Secondly, if the database update performed by Service C fails,
then a notification e-mail must be sent out to a human administrator. Third, if the database update performed by either Service C or Service D fails, then both of these updates must be reversed so that the respective databases are restored back to their original states.
What steps can be taken to fulfill these requirements?
A. The Compensating Service Transaction pattern is applied to Service B so that it invokes exception handling logic that logs failed database updates before responding with a failure code back to Service A . Similarly, the Compensating Service Transaction pattern is applied to Service C so that it issues an e-mail notification to a human administrator when a database update fails. The Atomic Service Transaction pattern is applied so that Services
A, C, and D are encompassed in the scope of a transaction that will guarantee that if the database updates performed by either Service C or Service D fails, then both updates will be rolled back. The Service Autonomy principle is further applied to Service A to ensure that it remains consistently available to carry out this sequence of actions.
B. None of the above.
C. The Atomic Service Transaction pattern is applied so that Services A, C, and D are encompassed in the scope of a transaction that will guarantee that if the database updates performed by either Service C or Service D fails, then both updates will be rolled back. The
Compensating Service Transaction pattern is then applied to all services so that the scope of the compensating transaction includes the scope of the atomic transaction. The compensating exception logic that is added to Service D automatically invokes Service B to log the failure condition and Service C to issue the e-mail notification to the human administrator. This way, it is guaranteed that the compensating logic is always executed together with the atomic transaction logic.
D. Service A is updated to perform a logging routine when Service A receives a response message from Service B containing a failure code. Service A is further updated to send an e-mail notification to a human administrator if Service A receives a response message from
Service C containing a failure code. The Atomic Service Transaction pattern is applied so that Services A, C, and D are encompassed in the scope of a transaction that will guarantee that if the database updates performed by either Service C or Service D fails, then both updates will be rolled back.
Answer: D

QUESTION NO: 2
You are told that in this service composition architecture, all four services are exchanging invoice-related data in an XML format. The services in Service Inventory A are standardized to use a specific XML schema for invoice data. Design standards were not applied to the service contracts used in Service Inventory B, which means that each service uses a different XML schema for the same kind of data. Database A and Database
B can only accept data in the Comma Separated Value (CSV) format and therefore cannot accept XML formatted data. What steps can be taken to enable the planned data exchange between these four services?
A. The Data Model Transformation pattern can be applied so that data model transformation logic is positioned between Service A and Service C and between Service C and Service D . The Data Format Transformation pattern can be applied so that data format transformation logic is positioned between the Service B logic and Database A and between the Service D logic and Database B.
B. The Data Model Transformation pattern can be applied so that data model transformation logic is positioned between Service A and Service C . The Protocol Bridging pattern can be applied so that protocol bridging logic is positioned between Service A and
Service B and between the Service C and Service D . The Data Format Transformation pattern can be applied so that data format transformation logic is positioned between the
Service B logic and Database A and between the Service D logic and Database B.
C. None of the above.
D. The Data Model Transformation pattern can be applied so that data model transformation logic is positioned between Service A and Service B, between Service A and Service C, and between Service C and Service D . The Data Format Transformation pattern can be applied so that data format transformation logic is positioned between the
Service B logic and Database A and between the Service D logic and Database B.
Answer: D

QUESTION NO: 3
When Service A receives a message from Service Consumer A(1),the message is processed by Component A.
This component first invokes Component B (2), which uses values from the message to query
Database A in order to retrieve additional data.
Component B then returns the additional data to Component A.
Component A then invokes Component C (3), which interacts with the API of a legacy system to retrieve a new data value. Component C then returns the data value back to
Component A.
Next, Component A sends some of the data it has accumulated to Component D (4), which writes the data to a text file that is placed in a specific folder. Component D then waits until this file is imported into a different system via a regularly scheduled batch import. Upon completion of the import, Component D returns a success or failure code back to
Component A.
Component A finally sends a response to Service Consumer A (5) containing all of the data collected so far and Service Consumer A writes all of the data to Database B (6).
Components A, B, C.
and D belong to the Service A service architecture. Database A, the legacy system, and the file folders are shared resources within the IT enterprise.
Service A is a task service that completes an entire business task on its own without having to compose other services. However, you have received many complaints about the reliability of Service A . Specifically, it has three problems. First, when Component B accesses Database A, it may not receive a response for several minutes when the database is being accessed by other applications in the IT enterprise. Secondly, the legacy system accessed by Component C frequently crashes and therefore becomes unavailable for extended periods of time. Third, for Component D to respond to Component A, it must first wait for the batch import of the files to occur. This can take several minutes during which Service Consumer A remains stateful and consumes excessive memory. What steps can be taken to address these three problems?
A. The Legacy Wrapper pattern can be applied so that Component B is separated to wrap the shared database, thereby allowing Component A to interact with this new service instead of directly interacting with the database. The Legacy Wrapper pattern can be applied again so that Component C is separated into a separate service that acts as a wrapper of the legacy system API. Component D can then be separated into a separate service and the Event-Driven Messaging pattern can be applied to establish a publisher- subscriber relationship between this new service and Component A and between Service A and Service Consumer A.
The interaction between Service Consumer A and Component A is then redesigned so that
Component A issues a message back to Service Consumer A
when the event related to the batch import is triggered.
B. The Service Data Replication pattern can be applied so that Component B can access a replicated database instead of having to access the shared Database A directly. The
Legacy Wrapper pattern can be applied so that Component C is separated into a separate service that acts as a wrapper of the legacy system API. Next, the Asynchronous Queuing pattern can be applied so that a messaging queue is positioned between Component A and the new wrapper service, thereby enabling communication during times when the legacy system is unavailable. Finally, Component D is separated into a new service and the
Event-Driven Messaging pattern is applied to establish a publisher-subscriber relationship between this service and Component A and between Service A and Service Consumer A.
The interaction logic is redesigned as follows: Component A interacts with Component B, the new wrapper service, and then issues a request to the new event-driven service. Upon receiving a response triggered by the event related to the batch import, Service A responds to Service Consumer A.
C. The Service Data Replication pattern can be applied so that Component B can access a replicated database instead of having to access the shared Database A directly. The
Legacy Wrapper pattern can be applied so that Component C is separated into a separate service that acts as a wrapper of the legacy system API. Next, the Reliable Messaging pattern can be applied so that acknowledgements are issued from the new wrapper service to Component A, thereby enabling notifying Component A during times when the legacy system is unavailable. Finally, Component D is separated into a separate service and the
Event-Driven Messaging pattern is applied to establish a publisher-subscriber relationship between this new service and Component A.
The interaction between Service Consumer A and Component A is then redesigned so that
Component A first interacts with Component
B and the new wrapper service. Service A then issues a final message back to Service
Consumer A.
D. None of the above.
Answer: B

QUESTION NO: 4
It has been confirmed that Policy A and Policy B are, in fact, the same policy and that the security credential check performed by Service Agent B also needs to be carried out on messages sent to Service B .
How can this service composition architecture be changed to reduce the redundancy of policy content and fulfill the new security requirement?
A. The Policy Centralization pattern can be applied so that Policy A and Policy B are combined into the same policy. The policy enforcement logic is removed from Service
Agent C and Service Agent A is then used to enforce the policy for messages sent to
Service A and Service B . Service Agent B can be used to perform the security credential check for Service A and Service B .
B. None of the above.
C. The Policy Centralization pattern can be applied so that Service Agent A is changed to enforce the policy for messages sent to Service A and Service B and to perform the security credential check for Service A and Service B .
D. The Policy Centralization pattern can be applied so that Policy A and Policy B are combined into the same policy. The Service Agent pattern is then applied to introduce a new service agent (called Service Agent D) which carries out the validation and enforcement of Policy A and Policy B.
Service Agent B can be moved so that it performs
the security credential check for Service B, but not for Service A .
Answer: A

Pegasystems PEGACPLSA23V1 - ためらわずに速くあなたのショッピングカートに入れてください。 NewValidDumpsを利用したら、SOAのSymantec 250-585試験に合格するのを心配することはないです。 NewValidDumpsのSOAのSalesforce Advanced-Administrator試験トレーニング資料はインターネットでの全てのトレーニング資料のリーダーです。 それに我々はいつもユーザーからのフィードバックを受け付け、アドバイスの一部をフルに活用していますから、完璧なNewValidDumpsのSOAのSalesforce B2C-Commerce-Architect問題集を取得しました。 試験の準備をするためにNewValidDumpsのSOAのISACA CISA-KR試験トレーニング資料を買うのは冒険的行為と思ったとしたら、あなたの人生の全てが冒険なことになります。

Updated: May 25, 2022

S90.09復習解答例、S90.09科目対策 - Soa S90.09サンプル問題集

PDF問題と解答

試験コード:S90.09
試験名称:SOA Design & Architecture Lab
最近更新時間:2024-05-13
問題と解答:全 40
SOA S90.09 受験内容

  ダウンロード


 

模擬試験

試験コード:S90.09
試験名称:SOA Design & Architecture Lab
最近更新時間:2024-05-13
問題と解答:全 40
SOA S90.09 参考書

  ダウンロード


 

オンライン版

試験コード:S90.09
試験名称:SOA Design & Architecture Lab
最近更新時間:2024-05-13
問題と解答:全 40
SOA S90.09 日本語練習問題

  ダウンロード


 

S90.09 復習問題集

S90.09 資格準備 関連認定