CCA175難易度 資格取得

NewValidDumpsには専門的なエリート団体があります。認証専門家や技術者及び全面的な言語天才がずっと最新のClouderaのCCA175難易度試験を研究していますから、ClouderaのCCA175難易度認定試験に受かりたかったら、NewValidDumpsのサイトをクッリクしてください。あなたに成功に近づいて、夢の楽園に一歩一歩進めさせられます。 もし学習教材は問題があれば、或いは試験に不合格になる場合は、全額返金することを保証いたします。NewValidDumpsのClouderaのCCA175難易度試験トレーニング資料は質も良くて、値段も安いです。 NewValidDumpsのClouderaのCCA175難易度試験トレーニング資料を手に入れたら、我々は一年間の無料更新サービスを提供します。

Cloudera Certified CCA175 NewValidDumpsを選んだら、成功への扉を開きます。

Cloudera Certified CCA175難易度 - CCA Spark and Hadoop Developer Exam 心よりご成功を祈ります。 このような素晴らしい資料をぜひ見逃さないでください。IT技術の急速な発展につれて、IT認証試験の問題は常に変更されています。

ClouderaのCCA175難易度試験に合格するのは最良の方法の一です。我々NewValidDumpsの開発するClouderaのCCA175難易度ソフトはあなたに一番速い速度でClouderaのCCA175難易度試験のコツを把握させることができます。豊富な資料、便利なページ構成と購入した一年間の無料更新はあなたにClouderaのCCA175難易度試験に合格させる最高の支持です。

Cloudera CCA175難易度 - 正しい方法は大切です。

花に欺く言語紹介より自分で体験したほうがいいです。Cloudera CCA175難易度問題集は我々NewValidDumpsでは直接に無料のダウンロードを楽しみにしています。弊社の経験豊かなチームはあなたに最も信頼性の高いCloudera CCA175難易度問題集備考資料を作成して提供します。Cloudera CCA175難易度問題集の購買に何か質問があれば、我々の職員は皆様のお問い合わせを待っています。

試験が更新されているうちに、我々はClouderaのCCA175難易度試験の資料を更新し続けています。できるだけ100%の通過率を保証使用にしています。

CCA175 PDF DEMO:

QUESTION NO: 1
CORRECT TEXT
Problem Scenario 35 : You have been given a file named spark7/EmployeeName.csv
(id,name).
EmployeeName.csv
E01,Lokesh
E02,Bhupesh
E03,Amit
E04,Ratan
E05,Dinesh
E06,Pavan
E07,Tejas
E08,Sheela
E09,Kumar
E10,Venkat
1. Load this file from hdfs and sort it by name and save it back as (id,name) in results directory.
However, make sure while saving it should be able to write In a single file.
Answer:
See the explanation for Step by Step Solution and configuration.
Explanation:
Solution:
Step 1 : Create file in hdfs (We will do using Hue). However, you can first create in local filesystem and then upload it to hdfs.
Step 2 : Load EmployeeName.csv file from hdfs and create PairRDDs
val name = sc.textFile("spark7/EmployeeName.csv")
val namePairRDD = name.map(x=> (x.split(",")(0),x.split(",")(1)))
Step 3 : Now swap namePairRDD RDD.
val swapped = namePairRDD.map(item => item.swap)
step 4: Now sort the rdd by key.
val sortedOutput = swapped.sortByKey()
Step 5 : Now swap the result back
val swappedBack = sortedOutput.map(item => item.swap}
Step 6 : Save the output as a Text file and output must be written in a single file.
swappedBack. repartition(1).saveAsTextFile("spark7/result.txt")

QUESTION NO: 2
CORRECT TEXT
Problem Scenario 89 : You have been given below patient data in csv format, patientID,name,dateOfBirth,lastVisitDate
1001,Ah Teck,1991-12-31,2012-01-20
1002,Kumar,2011-10-29,2012-09-20
1003,Ali,2011-01-30,2012-10-21
Accomplish following activities.
1 . Find all the patients whose lastVisitDate between current time and '2012-09-15'
2 . Find all the patients who born in 2011
3 . Find all the patients age
4 . List patients whose last visited more than 60 days ago
5 . Select patients 18 years old or younger
Answer:
See the explanation for Step by Step Solution and configuration.
Explanation:
Solution :
Step 1:
hdfs dfs -mkdir sparksql3
hdfs dfs -put patients.csv sparksql3/
Step 2 : Now in spark shell
// SQLContext entry point for working with structured data
val sqlContext = neworg.apache.spark.sql.SQLContext(sc)
// this is used to implicitly convert an RDD to a DataFrame.
import sqlContext.impIicits._
// Import Spark SQL data types and Row.
import org.apache.spark.sql._
// load the data into a new RDD
val patients = sc.textFilef'sparksqIS/patients.csv")
// Return the first element in this RDD
patients.first()
//define the schema using a case class
case class Patient(patientid: Integer, name: String, dateOfBirth:String , lastVisitDate:
String)
// create an RDD of Product objects
val patRDD = patients.map(_.split(M,M)).map(p => Patient(p(0).tolnt,p(1),p(2),p(3))) patRDD.first() patRDD.count(}
// change RDD of Product objects to a DataFrame val patDF = patRDD.toDF()
// register the DataFrame as a temp table patDF.registerTempTable("patients"}
// Select data from table
val results = sqlContext.sql(......SELECT* FROM patients '.....)
// display dataframe in a tabular format
results.show()
//Find all the patients whose lastVisitDate between current time and '2012-09-15' val results = sqlContext.sql(......SELECT * FROM patients WHERE
TO_DATE(CAST(UNIX_TIMESTAMP(lastVisitDate, 'yyyy-MM-dd') AS TIMESTAMP))
BETWEEN '2012-09-15' AND current_timestamp() ORDER BY lastVisitDate......) results.showQ
/.Find all the patients who born in 2011
val results = sqlContext.sql(......SELECT * FROM patients WHERE
YEAR(TO_DATE(CAST(UNIXJTlMESTAMP(dateOfBirth, 'yyyy-MM-dd') AS
TIMESTAMP))) = 2011 ......)
results. show()
//Find all the patients age
val results = sqlContext.sql(......SELECT name, dateOfBirth, datediff(current_date(),
TO_DATE(CAST(UNIX_TIMESTAMP(dateOfBirth, 'yyyy-MM-dd') AS TlMESTAMP}}}/365
AS age
FROM patients
Mini >
results.show()
//List patients whose last visited more than 60 days ago
-- List patients whose last visited more than 60 days ago
val results = sqlContext.sql(......SELECT name, lastVisitDate FROM patients WHERE datediff(current_date(), TO_DATE(CAST(UNIX_TIMESTAMP[lastVisitDate, 'yyyy-MM-dd')
AS T1MESTAMP))) > 60......);
results. showQ;
-- Select patients 18 years old or younger
SELECT' FROM patients WHERE TO_DATE(CAST(UNIXJTlMESTAMP(dateOfBirth,
'yyyy-MM-dd') AS TIMESTAMP}) > DATE_SUB(current_date(),INTERVAL 18 YEAR); val results = sqlContext.sql(......SELECT' FROM patients WHERE
TO_DATE(CAST(UNIX_TIMESTAMP(dateOfBirth, 'yyyy-MM--dd') AS TIMESTAMP)) >
DATE_SUB(current_date(), T8*365)......);
results. showQ;
val results = sqlContext.sql(......SELECT DATE_SUB(current_date(), 18*365) FROM patients......); results.show();

QUESTION NO: 3
CORRECT TEXT
Problem Scenario 96 : Your spark application required extra Java options as below. -
XX:+PrintGCDetails-XX:+PrintGCTimeStamps
Please replace the XXX values correctly
./bin/spark-submit --name "My app" --master local[4] --conf spark.eventLog.enabled=talse -
-conf XXX hadoopexam.jar
Answer:
See the explanation for Step by Step Solution and configuration.
Explanation:
Solution
XXX: Mspark.executoi\extraJavaOptions=-XX:+PrintGCDetails -XX:+PrintGCTimeStamps"
Notes: ./bin/spark-submit \
--class <maln-class>
--master <master-url> \
--deploy-mode <deploy-mode> \
-conf <key>=<value> \
# other options
< application-jar> \
[application-arguments]
Here, conf is used to pass the Spark related contigs which are required for the application to run like any specific property(executor memory) or if you want to override the default property which is set in Spark-default.conf.

QUESTION NO: 4
CORRECT TEXT
Problem Scenario 13 : You have been given following mysql database details as well as other info.
user=retail_dba
password=cloudera
database=retail_db
jdbc URL = jdbc:mysql://quickstart:3306/retail_db
Please accomplish following.
1. Create a table in retailedb with following definition.
CREATE table departments_export (department_id int(11), department_name varchar(45), created_date T1MESTAMP DEFAULT NOWQ);
2. Now import the data from following directory into departments_export table,
/user/cloudera/departments new
Answer:
See the explanation for Step by Step Solution and configuration.
Explanation:
Solution :
Step 1 : Login to musql db
mysql --user=retail_dba -password=cloudera
show databases; use retail_db; show tables;
step 2 : Create a table as given in problem statement.
CREATE table departments_export (departmentjd int(11), department_name varchar(45), created_date T1MESTAMP DEFAULT NOW()); show tables;
Step 3 : Export data from /user/cloudera/departmentsnew to new table departments_export sqoop export -connect jdbc:mysql://quickstart:3306/retail_db \
-username retaildba \
--password cloudera \
--table departments_export \
-export-dir /user/cloudera/departments_new \
-batch
Step 4 : Now check the export is correctly done or not. mysql -user*retail_dba - password=cloudera show databases; use retail _db;
show tables;
select' from departments_export;

QUESTION NO: 5
CORRECT TEXT
Problem Scenario 40 : You have been given sample data as below in a file called spark15/file1.txt
3070811,1963,1096,,"US","CA",,1,
3022811,1963,1096,,"US","CA",,1,56
3033811,1963,1096,,"US","CA",,1,23
Below is the code snippet to process this tile.
val field= sc.textFile("spark15/f ilel.txt")
val mapper = field.map(x=> A)
mapper.map(x => x.map(x=> {B})).collect
Please fill in A and B so it can generate below final output
Array(Array(3070811,1963,109G, 0, "US", "CA", 0,1, 0)
,Array(3022811,1963,1096, 0, "US", "CA", 0,1, 56)
,Array(3033811,1963,1096, 0, "US", "CA", 0,1, 23)
)
Answer:
See the explanation for Step by Step Solution and configuration.
Explanation:
Solution :
A. x.split(","-1)
B. if (x. isEmpty) 0 else x

それで、弊社の質高いSAP C_SIGPM_2403試験資料を薦めさせてください。 Salesforce Salesforce-Data-Cloud-JPN - 自分の幸せは自分で作るものだと思われます。 私たちのSAP C_THR12_2311参考資料は十年以上にわたり、専門家が何度も練習して、作られました。 あなたは弊社の高品質Cloudera Microsoft AZ-800試験資料を利用して、一回に試験に合格します。 EC-COUNCIL ECSS - 弊社の無料なサンプルを遠慮なくダウンロードしてください。

Updated: May 28, 2022

CCA175難易度 - CCA175関連資格試験対応 & CCA Spark And Hadoop Developer Exam

PDF問題と解答

試験コード:CCA175
試験名称:CCA Spark and Hadoop Developer Exam
最近更新時間:2024-05-16
問題と解答:全 96
Cloudera CCA175 模擬モード

  ダウンロード


 

模擬試験

試験コード:CCA175
試験名称:CCA Spark and Hadoop Developer Exam
最近更新時間:2024-05-16
問題と解答:全 96
Cloudera CCA175 最速合格

  ダウンロード


 

オンライン版

試験コード:CCA175
試験名称:CCA Spark and Hadoop Developer Exam
最近更新時間:2024-05-16
問題と解答:全 96
Cloudera CCA175 再テスト

  ダウンロード


 

CCA175 関連試験