でも、成功へのショートカットがを見つけました。NewValidDumpsのClouderaのCCA175赤本合格率試験トレーニング資料を利用して気楽に試験に合格しました。それはコストパフォーマンスが非常に高い資料ですから、もしあなたも私と同じIT夢を持っていたら、NewValidDumpsのClouderaのCCA175赤本合格率試験トレーニング資料を利用してください。 NewValidDumpsはClouderaのCCA175赤本合格率問題集の正確性と高いカバー率を保証します。ClouderaのCCA175赤本合格率問題集を購入したら、NewValidDumpsは一年間で無料更新サービスを提供することができます。 きっと望んでいるでしょう。
数年以来の整理と分析によって開発されたCCA175 - CCA Spark and Hadoop Developer Exam赤本合格率問題集は権威的で全面的です。 CCA175 受験トレーリング資格証明書があれば、履歴書は他の人の履歴書より目立つようになります。現在、CCA175 受験トレーリング資格証明書の知名度がますます高くなっています。
NewValidDumpsは同業の中でそんなに良い地位を取るの原因は弊社のかなり正確な試験の練習問題と解答そえに迅速の更新で、このようにとても良い成績がとられています。そして、弊社が提供した問題集を安心で使用して、試験を安心で受けて、君のCloudera CCA175赤本合格率認証試験の100%の合格率を保証しますす。NewValidDumpsにたくさんのIT専門人士がいって、弊社の問題集に社会のITエリートが認定されて、弊社の問題集は試験の大幅カーバして、合格率が100%にまで達します。
NewValidDumpsのClouderaのCCA175赤本合格率の試験問題は同じシラバスに従って、実際のClouderaのCCA175赤本合格率認証試験にも従っています。弊社はずっとトレーニング資料をアップグレードしていますから、提供して差し上げた製品は一年間の無料更新サービスの景品があります。あなたはいつでもサブスクリプションの期間を延長することができますから、より多くの時間を取って充分に試験を準備できます。NewValidDumpsというサイトのトレーニング資料を利用するかどうかがまだ決まっていなかったら、NewValidDumpsのウェブで一部の試験問題と解答を無料にダウンローしてみることができます。あなたに向いていることを確かめてから買うのも遅くないですよ。あなたが決して後悔しないことを保証します。
もし失敗したら、全額で返金を保証いたします。NewValidDumpsの問題集はIT専門家がClouderaのCCA175赤本合格率「CCA Spark and Hadoop Developer Exam」認証試験について自分の知識と経験を利用して研究したものでございます。
QUESTION NO: 1
CORRECT TEXT
Problem Scenario 81 : You have been given MySQL DB with following details. You have been given following product.csv file product.csv productID,productCode,name,quantity,price
1001,PEN,Pen Red,5000,1.23
1002,PEN,Pen Blue,8000,1.25
1003,PEN,Pen Black,2000,1.25
1004,PEC,Pencil 2B,10000,0.48
1005,PEC,Pencil 2H,8000,0.49
1006,PEC,Pencil HB,0,9999.99
Now accomplish following activities.
1 . Create a Hive ORC table using SparkSql
2 . Load this data in Hive table.
QUESTION NO: 2
. Create a Hive parquet table using SparkSQL and load data in it.
Answer:
See the explanation for Step by Step Solution and configuration.
Explanation:
Solution :
Step 1 : Create this tile in HDFS under following directory (Without header}
/user/cloudera/he/exam/task1/productcsv
Step 2 : Now using Spark-shell read the file as RDD
// load the data into a new RDD
val products = sc.textFile("/user/cloudera/he/exam/task1/product.csv")
// Return the first element in this RDD
prod u cts.fi rst()
Step 3 : Now define the schema using a case class
case class Product(productid: Integer, code: String, name: String, quantity:lnteger, price:
Float)
Step 4 : create an RDD of Product objects
val prdRDD = products.map(_.split(",")).map(p =>
Product(p(0).tolnt,p(1),p(2),p(3}.tolnt,p(4}.toFloat))
prdRDD.first()
prdRDD.count()
Step 5 : Now create data frame val prdDF = prdRDD.toDF()
Step 6 : Now store data in hive warehouse directory. (However, table will not be created } import org.apache.spark.sql.SaveMode
prdDF.write.mode(SaveMode.Overwrite).format("orc").saveAsTable("product_orc_table") step 7:
Now create table using data stored in warehouse directory. With the help of hive.
hive
show tables
CREATE EXTERNAL TABLE products (productid int,code string,name string .quantity int, price float}
STORED AS ore
LOCATION 7user/hive/warehouse/product_orc_table';
Step 8 : Now create a parquet table
import org.apache.spark.sql.SaveMode
prdDF.write.mode(SaveMode.Overwrite).format("parquet").saveAsTable("product_parquet_ table")
Step 9 : Now create table using this
CREATE EXTERNAL TABLE products_parquet (productid int,code string,name string
.quantity int, price float}
STORED AS parquet
LOCATION 7user/hive/warehouse/product_parquet_table';
Step 10 : Check data has been loaded or not.
Select * from products;
Select * from products_parquet;
3. CORRECT TEXT
Problem Scenario 84 : In Continuation of previous question, please accomplish following activities.
1. Select all the products which has product code as null
2. Select all the products, whose name starts with Pen and results should be order by Price descending order.
3. Select all the products, whose name starts with Pen and results should be order by
Price descending order and quantity ascending order.
QUESTION NO: 3
Select top 2 products by price
Answer:
See the explanation for Step by Step Solution and configuration.
Explanation:
Solution :
Step 1 : Select all the products which has product code as null
val results = sqlContext.sql(......SELECT' FROM products WHERE code IS NULL......) results. showQ val results = sqlContext.sql(......SELECT * FROM products WHERE code = NULL ",,M ) results.showQ
Step 2 : Select all the products , whose name starts with Pen and results should be order by Price descending order. val results = sqlContext.sql(......SELECT * FROM products
WHERE name LIKE 'Pen %' ORDER BY price DESC......)
results. showQ
Step 3 : Select all the products , whose name starts with Pen and results should be order by Price descending order and quantity ascending order. val results = sqlContext.sql('.....SELECT * FROM products WHERE name LIKE 'Pen %' ORDER BY price DESC, quantity......) results. showQ
Step 4 : Select top 2 products by price
val results = sqlContext.sql(......SELECT' FROM products ORDER BY price desc
LIMIT2......}
results. show()
4. CORRECT TEXT
Problem Scenario 4: You have been given MySQL DB with following details.
user=retail_dba
password=cloudera
database=retail_db
table=retail_db.categories
jdbc URL = jdbc:mysql://quickstart:3306/retail_db
Please accomplish following activities.
Import Single table categories (Subset data} to hive managed table , where category_id between 1 and 22
Answer:
See the explanation for Step by Step Solution and configuration.
Explanation:
Solution :
Step 1 : Import Single table (Subset data)
sqoop import --connect jdbc:mysql://quickstart:3306/retail_db -username=retail_dba - password=cloudera -table=categories -where "\'category_id\' between 1 and 22" --hive- import --m 1
Note: Here the ' is the same you find on ~ key
This command will create a managed table and content will be created in the following directory.
/user/hive/warehouse/categories
Step 2 : Check whether table is created or not (In Hive)
show tables;
select * from categories;
QUESTION NO: 4
CORRECT TEXT
Problem Scenario 13 : You have been given following mysql database details as well as other info.
user=retail_dba
password=cloudera
database=retail_db
jdbc URL = jdbc:mysql://quickstart:3306/retail_db
Please accomplish following.
1. Create a table in retailedb with following definition.
CREATE table departments_export (department_id int(11), department_name varchar(45), created_date T1MESTAMP DEFAULT NOWQ);
2. Now import the data from following directory into departments_export table,
/user/cloudera/departments new
Answer:
See the explanation for Step by Step Solution and configuration.
Explanation:
Solution :
Step 1 : Login to musql db
mysql --user=retail_dba -password=cloudera
show databases; use retail_db; show tables;
step 2 : Create a table as given in problem statement.
CREATE table departments_export (departmentjd int(11), department_name varchar(45), created_date T1MESTAMP DEFAULT NOW()); show tables;
Step 3 : Export data from /user/cloudera/departmentsnew to new table departments_export sqoop export -connect jdbc:mysql://quickstart:3306/retail_db \
-username retaildba \
--password cloudera \
--table departments_export \
-export-dir /user/cloudera/departments_new \
-batch
Step 4 : Now check the export is correctly done or not. mysql -user*retail_dba - password=cloudera show databases; use retail _db;
show tables;
select' from departments_export;
QUESTION NO: 5
CORRECT TEXT
Problem Scenario 49 : You have been given below code snippet (do a sum of values by key}, with intermediate output.
val keysWithValuesList = Array("foo=A", "foo=A", "foo=A", "foo=A", "foo=B", "bar=C",
"bar=D", "bar=D")
val data = sc.parallelize(keysWithValuesl_ist}
//Create key value pairs
val kv = data.map(_.split("=")).map(v => (v(0), v(l))).cache()
val initialCount = 0;
val countByKey = kv.aggregateByKey(initialCount)(addToCounts, sumPartitionCounts)
Now define two functions (addToCounts, sumPartitionCounts) such, which will produce following results.
Output 1
countByKey.collect
res3: Array[(String, Int)] = Array((foo,5), (bar,3))
import scala.collection._
val initialSet = scala.collection.mutable.HashSet.empty[String]
val uniqueByKey = kv.aggregateByKey(initialSet)(addToSet, mergePartitionSets)
Now define two functions (addToSet, mergePartitionSets) such, which will produce following results.
Output 2:
uniqueByKey.collect
res4: Array[(String, scala.collection.mutable.HashSet[String])] = Array((foo,Set(B, A}},
(bar,Set(C, D}}}
Answer:
See the explanation for Step by Step Solution and configuration.
Explanation:
Solution :
val addToCounts = (n: Int, v: String) => n + 1
val sumPartitionCounts = (p1: Int, p2: Int} => p1 + p2
val addToSet = (s: mutable.HashSet[String], v: String) => s += v
val mergePartitionSets = (p1: mutable.HashSet[String], p2: mutable.HashSet[String]) => p1
+ += p2
ClouderaのWatchGuard Network-Security-Essentials認定試験に受かるのはあなたの技能を検証することだけでなく、あなたの専門知識を証明できて、上司は無駄にあなたを雇うことはしないことの証明書です。 SAP C_ACT_2403 - 弊社の資源はずっと改訂され、アップデートされていますから、緊密な相関関係があります。 NewValidDumpsの試験トレーニング資料はClouderaのCompTIA FC0-U61J認定試験の100パーセントの合格率を保証します。 それは我々はClouderaのThe Open Group OG0-093J問題集やThe Open Group OG0-093JスタディガイドやThe Open Group OG0-093J問題と解答がたくさんありますから。 CompTIA 220-1102 - NewValidDumpsで、あなたの試験のためのテクニックと勉強資料を見つけることができます。
Updated: May 28, 2022
試験コード:CCA175
試験名称:CCA Spark and Hadoop Developer Exam
最近更新時間:2024-11-16
問題と解答:全 96 問
Cloudera CCA175 復習対策書
ダウンロード
試験コード:CCA175
試験名称:CCA Spark and Hadoop Developer Exam
最近更新時間:2024-11-16
問題と解答:全 96 問
Cloudera CCA175 試験解答
ダウンロード
試験コード:CCA175
試験名称:CCA Spark and Hadoop Developer Exam
最近更新時間:2024-11-16
問題と解答:全 96 問
Cloudera CCA175 資格勉強
ダウンロード