CCA175資格認定 資格取得

NewValidDumpsが提供したClouderaのCCA175資格認定トレーニング資料を利用したら、ClouderaのCCA175資格認定認定試験に受かることはたやすくなります。NewValidDumpsがデザインしたトレーニングツールはあなたが一回で試験に合格することにヘルプを差し上げられます。NewValidDumpsのClouderaのCCA175資格認定トレーニング資料即ち問題と解答をダウンロードする限り、気楽に試験に受かることができるようになります。 我々社のCCA175資格認定練習問題は試験に参加する圧力を減らすだけでなく、お金を無駄にする煩悩を解消できます。あなたは弊社の商品を使用した後、一回でCloudera CCA175資格認定試験に合格できなかったら、弊社は全額返金することを承諾します。 あなたが自分のキャリアでの異なる条件で自身の利点を発揮することを助けられます。

Cloudera Certified CCA175 素晴らしい試験参考書です。

IT認定試験の中でどんな試験を受けても、NewValidDumpsのCCA175 - CCA Spark and Hadoop Developer Exam資格認定試験参考資料はあなたに大きなヘルプを与えることができます。 弊社は強力な教師チームがあって、彼たちは正確ではやくて例年のCloudera CCA175 日本語版参考資料認定試験の資料を整理して、直ちにもっとも最新の資料を集めて、弊社は全会一緻で認められています。Cloudera CCA175 日本語版参考資料試験認証に合格確率はとても小さいですが、NewValidDumpsはその合格確率を高めることが信じてくだい。

その中で、CCA175資格認定認定試験は最も重要な一つです。では、この試験に合格するためにどのように試験の準備をしているのですか。がむしゃらに試験に関連する知識を勉強しているのですか。

Cloudera CCA175資格認定 - それは正確性が高くて、カバー率も広いです。

ClouderaのCCA175資格認定は専門知識と情報技術の検査として認証試験で、NewValidDumpsはあなたに一日早くClouderaの認証試験に合格させて、多くの人が大量の時間とエネルギーを費やしても無駄になりました。NewValidDumpsにその問題が心配でなく、わずか20時間と少ないお金をを使って楽に試験に合格することができます。NewValidDumpsは君に対して特別の訓練を提供しています。

もちろん、我々はあなたに一番安心させるのは我々の開発する多くの受験生に合格させるClouderaのCCA175資格認定試験のソフトウェアです。我々はあなたに提供するのは最新で一番全面的なClouderaのCCA175資格認定問題集で、最も安全な購入保障で、最もタイムリーなClouderaのCCA175資格認定試験のソフトウェアの更新です。

CCA175 PDF DEMO:

QUESTION NO: 1
CORRECT TEXT
Problem Scenario 96 : Your spark application required extra Java options as below. -
XX:+PrintGCDetails-XX:+PrintGCTimeStamps
Please replace the XXX values correctly
./bin/spark-submit --name "My app" --master local[4] --conf spark.eventLog.enabled=talse -
-conf XXX hadoopexam.jar
Answer:
See the explanation for Step by Step Solution and configuration.
Explanation:
Solution
XXX: Mspark.executoi\extraJavaOptions=-XX:+PrintGCDetails -XX:+PrintGCTimeStamps"
Notes: ./bin/spark-submit \
--class <maln-class>
--master <master-url> \
--deploy-mode <deploy-mode> \
-conf <key>=<value> \
# other options
< application-jar> \
[application-arguments]
Here, conf is used to pass the Spark related contigs which are required for the application to run like any specific property(executor memory) or if you want to override the default property which is set in Spark-default.conf.

QUESTION NO: 2
CORRECT TEXT
Problem Scenario 35 : You have been given a file named spark7/EmployeeName.csv
(id,name).
EmployeeName.csv
E01,Lokesh
E02,Bhupesh
E03,Amit
E04,Ratan
E05,Dinesh
E06,Pavan
E07,Tejas
E08,Sheela
E09,Kumar
E10,Venkat
1. Load this file from hdfs and sort it by name and save it back as (id,name) in results directory.
However, make sure while saving it should be able to write In a single file.
Answer:
See the explanation for Step by Step Solution and configuration.
Explanation:
Solution:
Step 1 : Create file in hdfs (We will do using Hue). However, you can first create in local filesystem and then upload it to hdfs.
Step 2 : Load EmployeeName.csv file from hdfs and create PairRDDs
val name = sc.textFile("spark7/EmployeeName.csv")
val namePairRDD = name.map(x=> (x.split(",")(0),x.split(",")(1)))
Step 3 : Now swap namePairRDD RDD.
val swapped = namePairRDD.map(item => item.swap)
step 4: Now sort the rdd by key.
val sortedOutput = swapped.sortByKey()
Step 5 : Now swap the result back
val swappedBack = sortedOutput.map(item => item.swap}
Step 6 : Save the output as a Text file and output must be written in a single file.
swappedBack. repartition(1).saveAsTextFile("spark7/result.txt")

QUESTION NO: 3
CORRECT TEXT
Problem Scenario 13 : You have been given following mysql database details as well as other info.
user=retail_dba
password=cloudera
database=retail_db
jdbc URL = jdbc:mysql://quickstart:3306/retail_db
Please accomplish following.
1. Create a table in retailedb with following definition.
CREATE table departments_export (department_id int(11), department_name varchar(45), created_date T1MESTAMP DEFAULT NOWQ);
2. Now import the data from following directory into departments_export table,
/user/cloudera/departments new
Answer:
See the explanation for Step by Step Solution and configuration.
Explanation:
Solution :
Step 1 : Login to musql db
mysql --user=retail_dba -password=cloudera
show databases; use retail_db; show tables;
step 2 : Create a table as given in problem statement.
CREATE table departments_export (departmentjd int(11), department_name varchar(45), created_date T1MESTAMP DEFAULT NOW()); show tables;
Step 3 : Export data from /user/cloudera/departmentsnew to new table departments_export sqoop export -connect jdbc:mysql://quickstart:3306/retail_db \
-username retaildba \
--password cloudera \
--table departments_export \
-export-dir /user/cloudera/departments_new \
-batch
Step 4 : Now check the export is correctly done or not. mysql -user*retail_dba - password=cloudera show databases; use retail _db;
show tables;
select' from departments_export;

QUESTION NO: 4
CORRECT TEXT
Problem Scenario 89 : You have been given below patient data in csv format, patientID,name,dateOfBirth,lastVisitDate
1001,Ah Teck,1991-12-31,2012-01-20
1002,Kumar,2011-10-29,2012-09-20
1003,Ali,2011-01-30,2012-10-21
Accomplish following activities.
1 . Find all the patients whose lastVisitDate between current time and '2012-09-15'
2 . Find all the patients who born in 2011
3 . Find all the patients age
4 . List patients whose last visited more than 60 days ago
5 . Select patients 18 years old or younger
Answer:
See the explanation for Step by Step Solution and configuration.
Explanation:
Solution :
Step 1:
hdfs dfs -mkdir sparksql3
hdfs dfs -put patients.csv sparksql3/
Step 2 : Now in spark shell
// SQLContext entry point for working with structured data
val sqlContext = neworg.apache.spark.sql.SQLContext(sc)
// this is used to implicitly convert an RDD to a DataFrame.
import sqlContext.impIicits._
// Import Spark SQL data types and Row.
import org.apache.spark.sql._
// load the data into a new RDD
val patients = sc.textFilef'sparksqIS/patients.csv")
// Return the first element in this RDD
patients.first()
//define the schema using a case class
case class Patient(patientid: Integer, name: String, dateOfBirth:String , lastVisitDate:
String)
// create an RDD of Product objects
val patRDD = patients.map(_.split(M,M)).map(p => Patient(p(0).tolnt,p(1),p(2),p(3))) patRDD.first() patRDD.count(}
// change RDD of Product objects to a DataFrame val patDF = patRDD.toDF()
// register the DataFrame as a temp table patDF.registerTempTable("patients"}
// Select data from table
val results = sqlContext.sql(......SELECT* FROM patients '.....)
// display dataframe in a tabular format
results.show()
//Find all the patients whose lastVisitDate between current time and '2012-09-15' val results = sqlContext.sql(......SELECT * FROM patients WHERE
TO_DATE(CAST(UNIX_TIMESTAMP(lastVisitDate, 'yyyy-MM-dd') AS TIMESTAMP))
BETWEEN '2012-09-15' AND current_timestamp() ORDER BY lastVisitDate......) results.showQ
/.Find all the patients who born in 2011
val results = sqlContext.sql(......SELECT * FROM patients WHERE
YEAR(TO_DATE(CAST(UNIXJTlMESTAMP(dateOfBirth, 'yyyy-MM-dd') AS
TIMESTAMP))) = 2011 ......)
results. show()
//Find all the patients age
val results = sqlContext.sql(......SELECT name, dateOfBirth, datediff(current_date(),
TO_DATE(CAST(UNIX_TIMESTAMP(dateOfBirth, 'yyyy-MM-dd') AS TlMESTAMP}}}/365
AS age
FROM patients
Mini >
results.show()
//List patients whose last visited more than 60 days ago
-- List patients whose last visited more than 60 days ago
val results = sqlContext.sql(......SELECT name, lastVisitDate FROM patients WHERE datediff(current_date(), TO_DATE(CAST(UNIX_TIMESTAMP[lastVisitDate, 'yyyy-MM-dd')
AS T1MESTAMP))) > 60......);
results. showQ;
-- Select patients 18 years old or younger
SELECT' FROM patients WHERE TO_DATE(CAST(UNIXJTlMESTAMP(dateOfBirth,
'yyyy-MM-dd') AS TIMESTAMP}) > DATE_SUB(current_date(),INTERVAL 18 YEAR); val results = sqlContext.sql(......SELECT' FROM patients WHERE
TO_DATE(CAST(UNIX_TIMESTAMP(dateOfBirth, 'yyyy-MM--dd') AS TIMESTAMP)) >
DATE_SUB(current_date(), T8*365)......);
results. showQ;
val results = sqlContext.sql(......SELECT DATE_SUB(current_date(), 18*365) FROM patients......); results.show();

QUESTION NO: 5
Select top 2 products by price
Answer:
See the explanation for Step by Step Solution and configuration.
Explanation:
Solution :
Step 1 : Select all the products which has product code as null
val results = sqlContext.sql(......SELECT' FROM products WHERE code IS NULL......) results. showQ val results = sqlContext.sql(......SELECT * FROM products WHERE code = NULL ",,M ) results.showQ
Step 2 : Select all the products , whose name starts with Pen and results should be order by Price descending order. val results = sqlContext.sql(......SELECT * FROM products
WHERE name LIKE 'Pen %' ORDER BY price DESC......)
results. showQ
Step 3 : Select all the products , whose name starts with Pen and results should be order by Price descending order and quantity ascending order. val results = sqlContext.sql('.....SELECT * FROM products WHERE name LIKE 'Pen %' ORDER BY price DESC, quantity......) results. showQ
Step 4 : Select top 2 products by price
val results = sqlContext.sql(......SELECT' FROM products ORDER BY price desc
LIMIT2......}
results. show()
4. CORRECT TEXT
Problem Scenario 4: You have been given MySQL DB with following details.
user=retail_dba
password=cloudera
database=retail_db
table=retail_db.categories
jdbc URL = jdbc:mysql://quickstart:3306/retail_db
Please accomplish following activities.
Import Single table categories (Subset data} to hive managed table , where category_id between 1 and 22
Answer:
See the explanation for Step by Step Solution and configuration.
Explanation:
Solution :
Step 1 : Import Single table (Subset data)
sqoop import --connect jdbc:mysql://quickstart:3306/retail_db -username=retail_dba - password=cloudera -table=categories -where "\'category_id\' between 1 and 22" --hive- import --m 1
Note: Here the ' is the same you find on ~ key
This command will create a managed table and content will be created in the following directory.
/user/hive/warehouse/categories
Step 2 : Check whether table is created or not (In Hive)
show tables;
select * from categories;

Microsoft MB-920J - NewValidDumpsはたくさんの方がIT者になる夢を実現させるサイトでございます。 ClouderaのHuawei H19-135_V1.0の購入の前にあなたの無料の試しから、購入の後での一年間の無料更新まで我々はあなたのClouderaのHuawei H19-135_V1.0試験に一番信頼できるヘルプを提供します。 Microsoft PL-900-KR - NewValidDumpsを選択したら、成功をとりましょう。 CompTIA PK0-005J - 社会と経済の発展につれて、多くの人はIT技術を勉強します。 Salesforce Salesforce-Marketing-Associate 勉強資料は公式ClouderaのSalesforce Salesforce-Marketing-Associate試験トレーニング授業 、ClouderaのSalesforce Salesforce-Marketing-Associate 自習ガイド、ClouderaのSalesforce Salesforce-Marketing-Associate の試験と実践やClouderaのSalesforce Salesforce-Marketing-Associateオンラインテストなどに含まれています。

Updated: May 28, 2022

CCA175資格認定 & Cloudera CCA Spark And Hadoop Developer Exam復習教材

PDF問題と解答

試験コード:CCA175
試験名称:CCA Spark and Hadoop Developer Exam
最近更新時間:2024-11-16
問題と解答:全 96
Cloudera CCA175 試験内容

  ダウンロード


 

模擬試験

試験コード:CCA175
試験名称:CCA Spark and Hadoop Developer Exam
最近更新時間:2024-11-16
問題と解答:全 96
Cloudera CCA175 対応問題集

  ダウンロード


 

オンライン版

試験コード:CCA175
試験名称:CCA Spark and Hadoop Developer Exam
最近更新時間:2024-11-16
問題と解答:全 96
Cloudera CCA175 ファンデーション

  ダウンロード


 

CCA175 最新資料