CCA175資格試験 資格取得

IT職員のあなたは毎月毎月のあまり少ない給料を持っていますが、暇の時間でひたすら楽しむんでいいですか。Cloudera CCA175資格試験試験認定書はIT職員野給料増加と仕事の昇進にとって、大切なものです。それで、我々社の無料のCloudera CCA175資格試験デモを参考して、あなたに相応しい問題集を入手します。 こうして、弊社の商品はどのくらいあなたの力になるのはよく分かっています。NewValidDumpsはCloudera CCA175資格試験認証試験を助けって通じての最良の選択で、100%のCloudera CCA175資格試験認証試験合格率のはNewValidDumps最高の保証でございます。 そして、CCA175資格試験試験参考書の問題は本当の試験問題とだいたい同じことであるとわかります。

Cloudera Certified CCA175 きっと君に失望させないと信じています。

CCA175 - CCA Spark and Hadoop Developer Exam資格試験試験がユニバーサルになりましたから、あなたはNewValidDumps のClouderaのCCA175 - CCA Spark and Hadoop Developer Exam資格試験試験問題と解答¥を利用したらきっと試験に合格するができます。 我々は受験生の皆様により高いスピードを持っているかつ効率的なサービスを提供することにずっと力を尽くしていますから、あなたが貴重な時間を節約することに助けを差し上げます。NewValidDumps ClouderaのCCA175 無料試験試験問題集はあなたに問題と解答に含まれている大量なテストガイドを提供しています。

NewValidDumpsがあなたに差し上げられるのはIT業種の最先端のスキルを習得したこととClouderaのCCA175資格試験認定試験に合格したことです。この試験は本当に難しいことがみんなは良く知っていますが、試験に受かるのは不可能ではないです。自分に向いている勉強ツールを選べますから。

Cloudera CCA175資格試験 - IT職員としてのあなたは切迫感を感じましたか。

IT認定試験の中でどんな試験を受けても、NewValidDumpsのCCA175資格試験試験参考資料はあなたに大きなヘルプを与えることができます。それは NewValidDumpsのCCA175資格試験問題集には実際の試験に出題される可能性がある問題をすべて含んでいて、しかもあなたをよりよく問題を理解させるように詳しい解析を与えますから。真剣にNewValidDumpsのCloudera CCA175資格試験問題集を勉強する限り、受験したい試験に楽に合格することができるということです。

いかがですか。NewValidDumpsの問題集はあなたを試験の準備する時間を大量に節約させることができます。

CCA175 PDF DEMO:

QUESTION NO: 1
CORRECT TEXT
Problem Scenario 81 : You have been given MySQL DB with following details. You have been given following product.csv file product.csv productID,productCode,name,quantity,price
1001,PEN,Pen Red,5000,1.23
1002,PEN,Pen Blue,8000,1.25
1003,PEN,Pen Black,2000,1.25
1004,PEC,Pencil 2B,10000,0.48
1005,PEC,Pencil 2H,8000,0.49
1006,PEC,Pencil HB,0,9999.99
Now accomplish following activities.
1 . Create a Hive ORC table using SparkSql
2 . Load this data in Hive table.

QUESTION NO: 2
. Create a Hive parquet table using SparkSQL and load data in it.
Answer:
See the explanation for Step by Step Solution and configuration.
Explanation:
Solution :
Step 1 : Create this tile in HDFS under following directory (Without header}
/user/cloudera/he/exam/task1/productcsv
Step 2 : Now using Spark-shell read the file as RDD
// load the data into a new RDD
val products = sc.textFile("/user/cloudera/he/exam/task1/product.csv")
// Return the first element in this RDD
prod u cts.fi rst()
Step 3 : Now define the schema using a case class
case class Product(productid: Integer, code: String, name: String, quantity:lnteger, price:
Float)
Step 4 : create an RDD of Product objects
val prdRDD = products.map(_.split(",")).map(p =>
Product(p(0).tolnt,p(1),p(2),p(3}.tolnt,p(4}.toFloat))
prdRDD.first()
prdRDD.count()
Step 5 : Now create data frame val prdDF = prdRDD.toDF()
Step 6 : Now store data in hive warehouse directory. (However, table will not be created } import org.apache.spark.sql.SaveMode
prdDF.write.mode(SaveMode.Overwrite).format("orc").saveAsTable("product_orc_table") step 7:
Now create table using data stored in warehouse directory. With the help of hive.
hive
show tables
CREATE EXTERNAL TABLE products (productid int,code string,name string .quantity int, price float}
STORED AS ore
LOCATION 7user/hive/warehouse/product_orc_table';
Step 8 : Now create a parquet table
import org.apache.spark.sql.SaveMode
prdDF.write.mode(SaveMode.Overwrite).format("parquet").saveAsTable("product_parquet_ table")
Step 9 : Now create table using this
CREATE EXTERNAL TABLE products_parquet (productid int,code string,name string
.quantity int, price float}
STORED AS parquet
LOCATION 7user/hive/warehouse/product_parquet_table';
Step 10 : Check data has been loaded or not.
Select * from products;
Select * from products_parquet;
3. CORRECT TEXT
Problem Scenario 84 : In Continuation of previous question, please accomplish following activities.
1. Select all the products which has product code as null
2. Select all the products, whose name starts with Pen and results should be order by Price descending order.
3. Select all the products, whose name starts with Pen and results should be order by
Price descending order and quantity ascending order.

QUESTION NO: 3
Select top 2 products by price
Answer:
See the explanation for Step by Step Solution and configuration.
Explanation:
Solution :
Step 1 : Select all the products which has product code as null
val results = sqlContext.sql(......SELECT' FROM products WHERE code IS NULL......) results. showQ val results = sqlContext.sql(......SELECT * FROM products WHERE code = NULL ",,M ) results.showQ
Step 2 : Select all the products , whose name starts with Pen and results should be order by Price descending order. val results = sqlContext.sql(......SELECT * FROM products
WHERE name LIKE 'Pen %' ORDER BY price DESC......)
results. showQ
Step 3 : Select all the products , whose name starts with Pen and results should be order by Price descending order and quantity ascending order. val results = sqlContext.sql('.....SELECT * FROM products WHERE name LIKE 'Pen %' ORDER BY price DESC, quantity......) results. showQ
Step 4 : Select top 2 products by price
val results = sqlContext.sql(......SELECT' FROM products ORDER BY price desc
LIMIT2......}
results. show()
4. CORRECT TEXT
Problem Scenario 4: You have been given MySQL DB with following details.
user=retail_dba
password=cloudera
database=retail_db
table=retail_db.categories
jdbc URL = jdbc:mysql://quickstart:3306/retail_db
Please accomplish following activities.
Import Single table categories (Subset data} to hive managed table , where category_id between 1 and 22
Answer:
See the explanation for Step by Step Solution and configuration.
Explanation:
Solution :
Step 1 : Import Single table (Subset data)
sqoop import --connect jdbc:mysql://quickstart:3306/retail_db -username=retail_dba - password=cloudera -table=categories -where "\'category_id\' between 1 and 22" --hive- import --m 1
Note: Here the ' is the same you find on ~ key
This command will create a managed table and content will be created in the following directory.
/user/hive/warehouse/categories
Step 2 : Check whether table is created or not (In Hive)
show tables;
select * from categories;

QUESTION NO: 4
CORRECT TEXT
Problem Scenario 13 : You have been given following mysql database details as well as other info.
user=retail_dba
password=cloudera
database=retail_db
jdbc URL = jdbc:mysql://quickstart:3306/retail_db
Please accomplish following.
1. Create a table in retailedb with following definition.
CREATE table departments_export (department_id int(11), department_name varchar(45), created_date T1MESTAMP DEFAULT NOWQ);
2. Now import the data from following directory into departments_export table,
/user/cloudera/departments new
Answer:
See the explanation for Step by Step Solution and configuration.
Explanation:
Solution :
Step 1 : Login to musql db
mysql --user=retail_dba -password=cloudera
show databases; use retail_db; show tables;
step 2 : Create a table as given in problem statement.
CREATE table departments_export (departmentjd int(11), department_name varchar(45), created_date T1MESTAMP DEFAULT NOW()); show tables;
Step 3 : Export data from /user/cloudera/departmentsnew to new table departments_export sqoop export -connect jdbc:mysql://quickstart:3306/retail_db \
-username retaildba \
--password cloudera \
--table departments_export \
-export-dir /user/cloudera/departments_new \
-batch
Step 4 : Now check the export is correctly done or not. mysql -user*retail_dba - password=cloudera show databases; use retail _db;
show tables;
select' from departments_export;

QUESTION NO: 5
CORRECT TEXT
Problem Scenario 49 : You have been given below code snippet (do a sum of values by key}, with intermediate output.
val keysWithValuesList = Array("foo=A", "foo=A", "foo=A", "foo=A", "foo=B", "bar=C",
"bar=D", "bar=D")
val data = sc.parallelize(keysWithValuesl_ist}
//Create key value pairs
val kv = data.map(_.split("=")).map(v => (v(0), v(l))).cache()
val initialCount = 0;
val countByKey = kv.aggregateByKey(initialCount)(addToCounts, sumPartitionCounts)
Now define two functions (addToCounts, sumPartitionCounts) such, which will produce following results.
Output 1
countByKey.collect
res3: Array[(String, Int)] = Array((foo,5), (bar,3))
import scala.collection._
val initialSet = scala.collection.mutable.HashSet.empty[String]
val uniqueByKey = kv.aggregateByKey(initialSet)(addToSet, mergePartitionSets)
Now define two functions (addToSet, mergePartitionSets) such, which will produce following results.
Output 2:
uniqueByKey.collect
res4: Array[(String, scala.collection.mutable.HashSet[String])] = Array((foo,Set(B, A}},
(bar,Set(C, D}}}
Answer:
See the explanation for Step by Step Solution and configuration.
Explanation:
Solution :
val addToCounts = (n: Int, v: String) => n + 1
val sumPartitionCounts = (p1: Int, p2: Int} => p1 + p2
val addToSet = (s: mutable.HashSet[String], v: String) => s += v
val mergePartitionSets = (p1: mutable.HashSet[String], p2: mutable.HashSet[String]) => p1
+ += p2

H3C GB0-343 - Clouderaの認証資格は最近ますます人気になっていますね。 CompTIA 220-1102 - この認定試験の資格を取得すれば、あなたは大きなメリットを得ることができます。 Microsoft MB-310J - 早速買いに行きましょう。 それはNewValidDumpsのSAP C_TS4CO_2023-JPN問題集を利用することです。 Microsoft PL-600 - それは正確性が高くて、カバー率も広いです。

Updated: May 28, 2022

CCA175資格試験 & Cloudera CCA Spark And Hadoop Developer Exam日本語対策問題集

PDF問題と解答

試験コード:CCA175
試験名称:CCA Spark and Hadoop Developer Exam
最近更新時間:2024-11-16
問題と解答:全 96
Cloudera CCA175 最新資料

  ダウンロード


 

模擬試験

試験コード:CCA175
試験名称:CCA Spark and Hadoop Developer Exam
最近更新時間:2024-11-16
問題と解答:全 96
Cloudera CCA175 模擬モード

  ダウンロード


 

オンライン版

試験コード:CCA175
試験名称:CCA Spark and Hadoop Developer Exam
最近更新時間:2024-11-16
問題と解答:全 96
Cloudera CCA175 最速合格

  ダウンロード


 

CCA175 再テスト