CCA175リンクグローバル 資格取得

ところで、受験生の皆さんを簡単にIT認定試験に合格させられる方法がないですか。もちろんありますよ。NewValidDumpsの問題集を利用することは正にその最良の方法です。 では、他の人を頼んで試験に合格する対策を教えてもらったのですか。試験に準備する方法が色々ありますが、最も高効率なのは、きっと良いツールを利用することですね。 NewValidDumpsのClouderaのCCA175リンクグローバル試験トレーニング資料は豊富な経験を持っているIT専門家が研究したものです。

Cloudera Certified CCA175 きっとそれを望んでいるでしょう。

Cloudera Certified CCA175リンクグローバル - CCA Spark and Hadoop Developer Exam 弊社の商品が好きなのは弊社のたのしいです。 もし私たちのClouderaのCCA175 模擬試験最新版問題集を購入したら、NewValidDumpsは一年間無料で更新サービスを提供することができます。NewValidDumpsのClouderaのCCA175 模擬試験最新版の試験問題と解答は実践されて、当面の市場で最も徹底的な正確的な最新的な模擬テストです。

NewValidDumps を選択して100%の合格率を確保することができて、もし試験に失敗したら、NewValidDumpsが全額で返金いたします。

Cloudera CCA175リンクグローバル - NewValidDumpsを選んだ方が良いです。

あなたはインターネットでClouderaのCCA175リンクグローバル認証試験の練習問題と解答の試用版を無料でダウンロードしてください。そうしたらあなたはNewValidDumpsが用意した問題集にもっと自信があります。早くNewValidDumpsの問題集を君の手に入れましょう。

あなたはNewValidDumpsの学習教材を購入した後、私たちは一年間で無料更新サービスを提供することができます。NewValidDumpsのClouderaのCCA175リンクグローバル試験トレーニング資料はClouderaのCCA175リンクグローバル認定試験を準備するのリーダーです。

CCA175 PDF DEMO:

QUESTION NO: 1
CORRECT TEXT
Problem Scenario 35 : You have been given a file named spark7/EmployeeName.csv
(id,name).
EmployeeName.csv
E01,Lokesh
E02,Bhupesh
E03,Amit
E04,Ratan
E05,Dinesh
E06,Pavan
E07,Tejas
E08,Sheela
E09,Kumar
E10,Venkat
1. Load this file from hdfs and sort it by name and save it back as (id,name) in results directory.
However, make sure while saving it should be able to write In a single file.
Answer:
See the explanation for Step by Step Solution and configuration.
Explanation:
Solution:
Step 1 : Create file in hdfs (We will do using Hue). However, you can first create in local filesystem and then upload it to hdfs.
Step 2 : Load EmployeeName.csv file from hdfs and create PairRDDs
val name = sc.textFile("spark7/EmployeeName.csv")
val namePairRDD = name.map(x=> (x.split(",")(0),x.split(",")(1)))
Step 3 : Now swap namePairRDD RDD.
val swapped = namePairRDD.map(item => item.swap)
step 4: Now sort the rdd by key.
val sortedOutput = swapped.sortByKey()
Step 5 : Now swap the result back
val swappedBack = sortedOutput.map(item => item.swap}
Step 6 : Save the output as a Text file and output must be written in a single file.
swappedBack. repartition(1).saveAsTextFile("spark7/result.txt")

QUESTION NO: 2
CORRECT TEXT
Problem Scenario 96 : Your spark application required extra Java options as below. -
XX:+PrintGCDetails-XX:+PrintGCTimeStamps
Please replace the XXX values correctly
./bin/spark-submit --name "My app" --master local[4] --conf spark.eventLog.enabled=talse -
-conf XXX hadoopexam.jar
Answer:
See the explanation for Step by Step Solution and configuration.
Explanation:
Solution
XXX: Mspark.executoi\extraJavaOptions=-XX:+PrintGCDetails -XX:+PrintGCTimeStamps"
Notes: ./bin/spark-submit \
--class <maln-class>
--master <master-url> \
--deploy-mode <deploy-mode> \
-conf <key>=<value> \
# other options
< application-jar> \
[application-arguments]
Here, conf is used to pass the Spark related contigs which are required for the application to run like any specific property(executor memory) or if you want to override the default property which is set in Spark-default.conf.

QUESTION NO: 3
CORRECT TEXT
Problem Scenario 89 : You have been given below patient data in csv format, patientID,name,dateOfBirth,lastVisitDate
1001,Ah Teck,1991-12-31,2012-01-20
1002,Kumar,2011-10-29,2012-09-20
1003,Ali,2011-01-30,2012-10-21
Accomplish following activities.
1 . Find all the patients whose lastVisitDate between current time and '2012-09-15'
2 . Find all the patients who born in 2011
3 . Find all the patients age
4 . List patients whose last visited more than 60 days ago
5 . Select patients 18 years old or younger
Answer:
See the explanation for Step by Step Solution and configuration.
Explanation:
Solution :
Step 1:
hdfs dfs -mkdir sparksql3
hdfs dfs -put patients.csv sparksql3/
Step 2 : Now in spark shell
// SQLContext entry point for working with structured data
val sqlContext = neworg.apache.spark.sql.SQLContext(sc)
// this is used to implicitly convert an RDD to a DataFrame.
import sqlContext.impIicits._
// Import Spark SQL data types and Row.
import org.apache.spark.sql._
// load the data into a new RDD
val patients = sc.textFilef'sparksqIS/patients.csv")
// Return the first element in this RDD
patients.first()
//define the schema using a case class
case class Patient(patientid: Integer, name: String, dateOfBirth:String , lastVisitDate:
String)
// create an RDD of Product objects
val patRDD = patients.map(_.split(M,M)).map(p => Patient(p(0).tolnt,p(1),p(2),p(3))) patRDD.first() patRDD.count(}
// change RDD of Product objects to a DataFrame val patDF = patRDD.toDF()
// register the DataFrame as a temp table patDF.registerTempTable("patients"}
// Select data from table
val results = sqlContext.sql(......SELECT* FROM patients '.....)
// display dataframe in a tabular format
results.show()
//Find all the patients whose lastVisitDate between current time and '2012-09-15' val results = sqlContext.sql(......SELECT * FROM patients WHERE
TO_DATE(CAST(UNIX_TIMESTAMP(lastVisitDate, 'yyyy-MM-dd') AS TIMESTAMP))
BETWEEN '2012-09-15' AND current_timestamp() ORDER BY lastVisitDate......) results.showQ
/.Find all the patients who born in 2011
val results = sqlContext.sql(......SELECT * FROM patients WHERE
YEAR(TO_DATE(CAST(UNIXJTlMESTAMP(dateOfBirth, 'yyyy-MM-dd') AS
TIMESTAMP))) = 2011 ......)
results. show()
//Find all the patients age
val results = sqlContext.sql(......SELECT name, dateOfBirth, datediff(current_date(),
TO_DATE(CAST(UNIX_TIMESTAMP(dateOfBirth, 'yyyy-MM-dd') AS TlMESTAMP}}}/365
AS age
FROM patients
Mini >
results.show()
//List patients whose last visited more than 60 days ago
-- List patients whose last visited more than 60 days ago
val results = sqlContext.sql(......SELECT name, lastVisitDate FROM patients WHERE datediff(current_date(), TO_DATE(CAST(UNIX_TIMESTAMP[lastVisitDate, 'yyyy-MM-dd')
AS T1MESTAMP))) > 60......);
results. showQ;
-- Select patients 18 years old or younger
SELECT' FROM patients WHERE TO_DATE(CAST(UNIXJTlMESTAMP(dateOfBirth,
'yyyy-MM-dd') AS TIMESTAMP}) > DATE_SUB(current_date(),INTERVAL 18 YEAR); val results = sqlContext.sql(......SELECT' FROM patients WHERE
TO_DATE(CAST(UNIX_TIMESTAMP(dateOfBirth, 'yyyy-MM--dd') AS TIMESTAMP)) >
DATE_SUB(current_date(), T8*365)......);
results. showQ;
val results = sqlContext.sql(......SELECT DATE_SUB(current_date(), 18*365) FROM patients......); results.show();

QUESTION NO: 4
CORRECT TEXT
Problem Scenario 13 : You have been given following mysql database details as well as other info.
user=retail_dba
password=cloudera
database=retail_db
jdbc URL = jdbc:mysql://quickstart:3306/retail_db
Please accomplish following.
1. Create a table in retailedb with following definition.
CREATE table departments_export (department_id int(11), department_name varchar(45), created_date T1MESTAMP DEFAULT NOWQ);
2. Now import the data from following directory into departments_export table,
/user/cloudera/departments new
Answer:
See the explanation for Step by Step Solution and configuration.
Explanation:
Solution :
Step 1 : Login to musql db
mysql --user=retail_dba -password=cloudera
show databases; use retail_db; show tables;
step 2 : Create a table as given in problem statement.
CREATE table departments_export (departmentjd int(11), department_name varchar(45), created_date T1MESTAMP DEFAULT NOW()); show tables;
Step 3 : Export data from /user/cloudera/departmentsnew to new table departments_export sqoop export -connect jdbc:mysql://quickstart:3306/retail_db \
-username retaildba \
--password cloudera \
--table departments_export \
-export-dir /user/cloudera/departments_new \
-batch
Step 4 : Now check the export is correctly done or not. mysql -user*retail_dba - password=cloudera show databases; use retail _db;
show tables;
select' from departments_export;

QUESTION NO: 5
Select top 2 products by price
Answer:
See the explanation for Step by Step Solution and configuration.
Explanation:
Solution :
Step 1 : Select all the products which has product code as null
val results = sqlContext.sql(......SELECT' FROM products WHERE code IS NULL......) results. showQ val results = sqlContext.sql(......SELECT * FROM products WHERE code = NULL ",,M ) results.showQ
Step 2 : Select all the products , whose name starts with Pen and results should be order by Price descending order. val results = sqlContext.sql(......SELECT * FROM products
WHERE name LIKE 'Pen %' ORDER BY price DESC......)
results. showQ
Step 3 : Select all the products , whose name starts with Pen and results should be order by Price descending order and quantity ascending order. val results = sqlContext.sql('.....SELECT * FROM products WHERE name LIKE 'Pen %' ORDER BY price DESC, quantity......) results. showQ
Step 4 : Select top 2 products by price
val results = sqlContext.sql(......SELECT' FROM products ORDER BY price desc
LIMIT2......}
results. show()
4. CORRECT TEXT
Problem Scenario 4: You have been given MySQL DB with following details.
user=retail_dba
password=cloudera
database=retail_db
table=retail_db.categories
jdbc URL = jdbc:mysql://quickstart:3306/retail_db
Please accomplish following activities.
Import Single table categories (Subset data} to hive managed table , where category_id between 1 and 22
Answer:
See the explanation for Step by Step Solution and configuration.
Explanation:
Solution :
Step 1 : Import Single table (Subset data)
sqoop import --connect jdbc:mysql://quickstart:3306/retail_db -username=retail_dba - password=cloudera -table=categories -where "\'category_id\' between 1 and 22" --hive- import --m 1
Note: Here the ' is the same you find on ~ key
This command will create a managed table and content will be created in the following directory.
/user/hive/warehouse/categories
Step 2 : Check whether table is created or not (In Hive)
show tables;
select * from categories;

SAP C_S4CPR_2402 - NewValidDumpsはまた一年間に無料なサービスを更新いたします。 Salesforce Salesforce-Loyalty-Management - オンライン係員は全日であなたにサービスを提供します。 弊社のEMC D-PEXE-IN-A-00のトレーニング資料を買ったら、一年間の無料更新サービスを差し上げます。 資料への改善を通して、我々のチームは我々のClouderaのVMware 2V0-31.24試験資料があなたを喜ばせるのを自信で話せます。 認証専門家や技術者及び全面的な言語天才がずっと最新のClouderaのMicrosoft MB-310試験を研究していますから、ClouderaのMicrosoft MB-310認定試験に受かりたかったら、NewValidDumpsのサイトをクッリクしてください。

Updated: May 28, 2022

CCA175リンクグローバル - Cloudera CCA Spark And Hadoop Developer Exam練習問題集

PDF問題と解答

試験コード:CCA175
試験名称:CCA Spark and Hadoop Developer Exam
最近更新時間:2024-07-06
問題と解答:全 96
Cloudera CCA175 ブロンズ教材

  ダウンロード


 

模擬試験

試験コード:CCA175
試験名称:CCA Spark and Hadoop Developer Exam
最近更新時間:2024-07-06
問題と解答:全 96
Cloudera CCA175 テストトレーニング

  ダウンロード


 

オンライン版

試験コード:CCA175
試験名称:CCA Spark and Hadoop Developer Exam
最近更新時間:2024-07-06
問題と解答:全 96
Cloudera CCA175 技術試験

  ダウンロード


 

CCA175 合格受験記