CCA175テスト問題集 資格取得

NewValidDumps を選択して100%の合格率を確保することができて、もし試験に失敗したら、NewValidDumpsが全額で返金いたします。 NewValidDumpsのClouderaのCCA175テスト問題集試験トレーニング資料はあなたの成功への第一歩です。この資料を持っていたら、難しいClouderaのCCA175テスト問題集認定試験に合格することができるようになります。 あなたはインターネットでClouderaのCCA175テスト問題集認証試験の練習問題と解答の試用版を無料でダウンロードしてください。

Cloudera Certified CCA175 NewValidDumpsを選んだら、成功への扉を開きます。

Cloudera Certified CCA175テスト問題集 - CCA Spark and Hadoop Developer Exam 心よりご成功を祈ります。 したがって、NewValidDumpsのCCA175 専門試験問題集も絶えずに更新されています。それに、NewValidDumpsの教材を購入すれば、NewValidDumpsは一年間の無料アップデート・サービスを提供してあげます。

豊富な資料、便利なページ構成と購入した一年間の無料更新はあなたにClouderaのCCA175テスト問題集試験に合格させる最高の支持です。あなたのIT能力が権威的に認められるのがほしいですか。ClouderaのCCA175テスト問題集試験に合格するのは最良の方法の一です。

Cloudera CCA175テスト問題集 - 常々、時間とお金ばかり効果がないです。

花に欺く言語紹介より自分で体験したほうがいいです。Cloudera CCA175テスト問題集問題集は我々NewValidDumpsでは直接に無料のダウンロードを楽しみにしています。弊社の経験豊かなチームはあなたに最も信頼性の高いCloudera CCA175テスト問題集問題集備考資料を作成して提供します。Cloudera CCA175テスト問題集問題集の購買に何か質問があれば、我々の職員は皆様のお問い合わせを待っています。

試験が更新されているうちに、我々はClouderaのCCA175テスト問題集試験の資料を更新し続けています。できるだけ100%の通過率を保証使用にしています。

CCA175 PDF DEMO:

QUESTION NO: 1
CORRECT TEXT
Problem Scenario 40 : You have been given sample data as below in a file called spark15/file1.txt
3070811,1963,1096,,"US","CA",,1,
3022811,1963,1096,,"US","CA",,1,56
3033811,1963,1096,,"US","CA",,1,23
Below is the code snippet to process this tile.
val field= sc.textFile("spark15/f ilel.txt")
val mapper = field.map(x=> A)
mapper.map(x => x.map(x=> {B})).collect
Please fill in A and B so it can generate below final output
Array(Array(3070811,1963,109G, 0, "US", "CA", 0,1, 0)
,Array(3022811,1963,1096, 0, "US", "CA", 0,1, 56)
,Array(3033811,1963,1096, 0, "US", "CA", 0,1, 23)
)
Answer:
See the explanation for Step by Step Solution and configuration.
Explanation:
Solution :
A. x.split(","-1)
B. if (x. isEmpty) 0 else x

QUESTION NO: 2
CORRECT TEXT
Problem Scenario 89 : You have been given below patient data in csv format, patientID,name,dateOfBirth,lastVisitDate
1001,Ah Teck,1991-12-31,2012-01-20
1002,Kumar,2011-10-29,2012-09-20
1003,Ali,2011-01-30,2012-10-21
Accomplish following activities.
1 . Find all the patients whose lastVisitDate between current time and '2012-09-15'
2 . Find all the patients who born in 2011
3 . Find all the patients age
4 . List patients whose last visited more than 60 days ago
5 . Select patients 18 years old or younger
Answer:
See the explanation for Step by Step Solution and configuration.
Explanation:
Solution :
Step 1:
hdfs dfs -mkdir sparksql3
hdfs dfs -put patients.csv sparksql3/
Step 2 : Now in spark shell
// SQLContext entry point for working with structured data
val sqlContext = neworg.apache.spark.sql.SQLContext(sc)
// this is used to implicitly convert an RDD to a DataFrame.
import sqlContext.impIicits._
// Import Spark SQL data types and Row.
import org.apache.spark.sql._
// load the data into a new RDD
val patients = sc.textFilef'sparksqIS/patients.csv")
// Return the first element in this RDD
patients.first()
//define the schema using a case class
case class Patient(patientid: Integer, name: String, dateOfBirth:String , lastVisitDate:
String)
// create an RDD of Product objects
val patRDD = patients.map(_.split(M,M)).map(p => Patient(p(0).tolnt,p(1),p(2),p(3))) patRDD.first() patRDD.count(}
// change RDD of Product objects to a DataFrame val patDF = patRDD.toDF()
// register the DataFrame as a temp table patDF.registerTempTable("patients"}
// Select data from table
val results = sqlContext.sql(......SELECT* FROM patients '.....)
// display dataframe in a tabular format
results.show()
//Find all the patients whose lastVisitDate between current time and '2012-09-15' val results = sqlContext.sql(......SELECT * FROM patients WHERE
TO_DATE(CAST(UNIX_TIMESTAMP(lastVisitDate, 'yyyy-MM-dd') AS TIMESTAMP))
BETWEEN '2012-09-15' AND current_timestamp() ORDER BY lastVisitDate......) results.showQ
/.Find all the patients who born in 2011
val results = sqlContext.sql(......SELECT * FROM patients WHERE
YEAR(TO_DATE(CAST(UNIXJTlMESTAMP(dateOfBirth, 'yyyy-MM-dd') AS
TIMESTAMP))) = 2011 ......)
results. show()
//Find all the patients age
val results = sqlContext.sql(......SELECT name, dateOfBirth, datediff(current_date(),
TO_DATE(CAST(UNIX_TIMESTAMP(dateOfBirth, 'yyyy-MM-dd') AS TlMESTAMP}}}/365
AS age
FROM patients
Mini >
results.show()
//List patients whose last visited more than 60 days ago
-- List patients whose last visited more than 60 days ago
val results = sqlContext.sql(......SELECT name, lastVisitDate FROM patients WHERE datediff(current_date(), TO_DATE(CAST(UNIX_TIMESTAMP[lastVisitDate, 'yyyy-MM-dd')
AS T1MESTAMP))) > 60......);
results. showQ;
-- Select patients 18 years old or younger
SELECT' FROM patients WHERE TO_DATE(CAST(UNIXJTlMESTAMP(dateOfBirth,
'yyyy-MM-dd') AS TIMESTAMP}) > DATE_SUB(current_date(),INTERVAL 18 YEAR); val results = sqlContext.sql(......SELECT' FROM patients WHERE
TO_DATE(CAST(UNIX_TIMESTAMP(dateOfBirth, 'yyyy-MM--dd') AS TIMESTAMP)) >
DATE_SUB(current_date(), T8*365)......);
results. showQ;
val results = sqlContext.sql(......SELECT DATE_SUB(current_date(), 18*365) FROM patients......); results.show();

QUESTION NO: 3
CORRECT TEXT
Problem Scenario 35 : You have been given a file named spark7/EmployeeName.csv
(id,name).
EmployeeName.csv
E01,Lokesh
E02,Bhupesh
E03,Amit
E04,Ratan
E05,Dinesh
E06,Pavan
E07,Tejas
E08,Sheela
E09,Kumar
E10,Venkat
1. Load this file from hdfs and sort it by name and save it back as (id,name) in results directory.
However, make sure while saving it should be able to write In a single file.
Answer:
See the explanation for Step by Step Solution and configuration.
Explanation:
Solution:
Step 1 : Create file in hdfs (We will do using Hue). However, you can first create in local filesystem and then upload it to hdfs.
Step 2 : Load EmployeeName.csv file from hdfs and create PairRDDs
val name = sc.textFile("spark7/EmployeeName.csv")
val namePairRDD = name.map(x=> (x.split(",")(0),x.split(",")(1)))
Step 3 : Now swap namePairRDD RDD.
val swapped = namePairRDD.map(item => item.swap)
step 4: Now sort the rdd by key.
val sortedOutput = swapped.sortByKey()
Step 5 : Now swap the result back
val swappedBack = sortedOutput.map(item => item.swap}
Step 6 : Save the output as a Text file and output must be written in a single file.
swappedBack. repartition(1).saveAsTextFile("spark7/result.txt")

QUESTION NO: 4
CORRECT TEXT
Problem Scenario 96 : Your spark application required extra Java options as below. -
XX:+PrintGCDetails-XX:+PrintGCTimeStamps
Please replace the XXX values correctly
./bin/spark-submit --name "My app" --master local[4] --conf spark.eventLog.enabled=talse -
-conf XXX hadoopexam.jar
Answer:
See the explanation for Step by Step Solution and configuration.
Explanation:
Solution
XXX: Mspark.executoi\extraJavaOptions=-XX:+PrintGCDetails -XX:+PrintGCTimeStamps"
Notes: ./bin/spark-submit \
--class <maln-class>
--master <master-url> \
--deploy-mode <deploy-mode> \
-conf <key>=<value> \
# other options
< application-jar> \
[application-arguments]
Here, conf is used to pass the Spark related contigs which are required for the application to run like any specific property(executor memory) or if you want to override the default property which is set in Spark-default.conf.

QUESTION NO: 5
CORRECT TEXT
Problem Scenario 46 : You have been given belwo list in scala (name,sex,cost) for each work done.
List( ("Deeapak" , "male", 4000), ("Deepak" , "male", 2000), ("Deepika" , "female",
2000),("Deepak" , "female", 2000), ("Deepak" , "male", 1000) , ("Neeta" , "female", 2000))
Now write a Spark program to load this list as an RDD and do the sum of cost for combination of name and sex (as key)
Answer:
See the explanation for Step by Step Solution and configuration.
Explanation:
Solution :
Step 1 : Create an RDD out of this list
val rdd = sc.parallelize(List( ("Deeapak" , "male", 4000}, ("Deepak" , "male", 2000),
("Deepika" , "female", 2000),("Deepak" , "female", 2000), ("Deepak" , "male", 1000} ,
("Neeta" , "female", 2000}}}
Step 2 : Convert this RDD in pair RDD
val byKey = rdd.map({case (name,sex,cost) => (name,sex)->cost})
Step 3 : Now group by Key
val byKeyGrouped = byKey.groupByKey
Step 4 : Nowsum the cost for each group
val result = byKeyGrouped.map{case ((id1,id2),values) => (id1,id2,values.sum)}
Step 5 : Save the results result.repartition(1).saveAsTextFile("spark12/result.txt")

IT職員にとって、CWNP CWISA-102試験認定書はあなたの実力を証明できる重要なツールです。 HP HP2-I59 - 自分の幸せは自分で作るものだと思われます。 私たちより、HP HP2-I65試験を知る人はいません。 あなたは弊社の高品質Cloudera Snowflake COF-C02試験資料を利用して、一回に試験に合格します。 Salesforce Industries-CPQ-Developer - 弊社の無料なサンプルを遠慮なくダウンロードしてください。

Updated: May 28, 2022

CCA175テスト問題集 - CCA175関連資格知識 & CCA Spark And Hadoop Developer Exam

PDF問題と解答

試験コード:CCA175
試験名称:CCA Spark and Hadoop Developer Exam
最近更新時間:2024-05-28
問題と解答:全 96
Cloudera CCA175 的中率

  ダウンロード


 

模擬試験

試験コード:CCA175
試験名称:CCA Spark and Hadoop Developer Exam
最近更新時間:2024-05-28
問題と解答:全 96
Cloudera CCA175 日本語受験攻略

  ダウンロード


 

オンライン版

試験コード:CCA175
試験名称:CCA Spark and Hadoop Developer Exam
最近更新時間:2024-05-28
問題と解答:全 96
Cloudera CCA175 受験料過去問

  ダウンロード


 

CCA175 最新対策問題